【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PEEQ的值是( )
A. 24 B. 9 C. 36 D. 27
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?( 。
A. 1 B. 2 C. 2﹣2 D. 4﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形和四邊形是兩個全等的矩形,其中、交于點,、交于點.
(1)判斷四邊形的形狀、并說明理由.
(2)若矩形的長是,寬是,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),,則y關于x的函數(shù)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.
①當t為 秒時,△PAD的周長最?當t為 秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC相交于點F.
(1)求證:FD=DC;
(2)若AE=8,DE=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿A→B→C向終點C運動,連接DM交AC于點N.
(1)如圖1,當點M在AB邊上時,連接BN
①試說明:;
②若∠ABC=60°,AM=4,求點M到AD的距離.
(2)如圖2,若∠ABC=90°,記點M運動所經過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點,OP⊥BC,垂足為E,交⊙O于D,連接BD.
(1)求證:BD平分∠PBC;
(2)若⊙O的半徑為1,PD=3DE,求OE及AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4
④2AB=3AC.
其中正確結論是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com