【題目】如圖,已知AB⊙O的直徑,C⊙O上一點,CD⊥ABD,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQCDE,則PEEQ的值是( )

A. 24 B. 9 C. 36 D. 27

【答案】D

【解析】

延長DC交⊙CM,延長CD交⊙ON.在⊙O中,由垂徑定理、相交弦定理易得CD=6.在⊙O、C中,由相交弦定理可知,設CE=x,列方程求解得CE=3.所以DE=6-3=3,EM=6+3=9,即可求得PEEQ.

延長DCCM,延長CDON.

CD=6.

在⊙O、C中,由相交弦定理可知,PEEQ=DEEM=CEEN,

CE=x,則DE=6x

(6x)(x+6)=x(6x+6),

解得x=3.

所以,CE=3,DE=63=3,EM=6+3=9.

所以PEEQ=3×9=27.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?( 。

A. 1 B. 2 C. 2﹣2 D. 4﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形和四邊形是兩個全等的矩形,其中、交于點,交于點

(1)判斷四邊形的形狀、并說明理由.

(2)若矩形的長是,寬是,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),,y關于x的函數(shù)的圖像大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標;

(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;

(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.

當t為   秒時,PAD的周長最?當t為   秒時,PAD是以AD為腰的等腰三角形?(結果保留根號)

點P在運動過程中,是否存在一點P,使PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AEBC相交于點F.

(1)求證:FD=DC;

(2)AE=8,DE=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為6的菱形ABCD中,動點M從點A出發(fā),沿A→B→C向終點C運動,連接DMAC于點N

1)如圖1,當點MAB邊上時,連接BN

試說明:;

∠ABC=60°,AM=4,求點MAD的距離.

2)如圖2,若∠ABC=90°,記點M運動所經過的路程為x6≤x≤12).試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AC⊙O的直徑,PB⊙O的切線,B為切點,OP⊥BC,垂足為E,交⊙OD,連接BD

1)求證:BD平分∠PBC;

2)若⊙O的半徑為1,PD=3DE,求OEAB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點BC.則以下結論:

①無論x取何值,y2的值總是正數(shù);

a=1;

③當x=0時,y2﹣y1=4

2AB=3AC

其中正確結論是______

查看答案和解析>>

同步練習冊答案