【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,,因?yàn)?/span>,所以12的最佳分解,所以.

1)求;

2)若正整數(shù)4的倍數(shù),我們稱正整數(shù)四季數(shù),如果一個(gè)兩位正整數(shù),,為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來的兩位正整數(shù)所得的差為四季數(shù),那么我們稱這個(gè)數(shù)有緣數(shù),求所有有緣數(shù)的最小值.

【答案】11;(2最小值為.

【解析】

1)根據(jù)題意求出,的值代入即可.

2)根據(jù)題意列出二元一次方程,解的所有可能性,求出最小值.

解:(1,

2)根據(jù)題意得:為正整數(shù))

,或

,

,

,

兩位正整數(shù)為 51,62,7384,9591

,,,

的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DFBC于點(diǎn)F,連接EF求證:(1ADE≌△CDF;(2BEF=BFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線ykx+bk>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則Bn的坐標(biāo)是( 。

A.(2n﹣1,2n1B.(2n1+1,2n1

C.(2n﹣1,2n﹣1)D.(2n﹣1,n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,□OABC的邊OCy軸的正半軸上,OC3,A(2,1),反比例函數(shù)y (x0)的圖象經(jīng)過點(diǎn)B

1)求點(diǎn)B的坐標(biāo)和反比例函數(shù)的關(guān)系式;

2)如圖2,將線段OA延長交y (x0)的圖象于點(diǎn)D,過B,D的直線分別交x軸、y軸于E,F兩點(diǎn),①求直線BD的解析式;②求線段ED的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降,今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為90萬元,今年銷售額只有80萬元.

(1)今年5月份A款汽車每輛售價(jià)多少萬元?

(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知B款汽車每輛進(jìn)價(jià)為7.5萬元,每輛售價(jià)為10.5萬元,A款汽車每輛進(jìn)價(jià)為6萬元,若賣出這兩款汽車15輛后獲利不低于38萬元,問B款汽車至少賣出多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三角形中,點(diǎn)、分別在線段、上,,點(diǎn)在直線上運(yùn)動,交直線,過點(diǎn),交直線

1)如圖1,當(dāng)點(diǎn)在線段的延長線上時(shí),求證:;

2)如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),將圖補(bǔ)充完整,點(diǎn)在線段上,連接,若,求證:;

3)在(2)的條件下,延長至點(diǎn),延長至點(diǎn),若,,則的度數(shù)是  (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與BC重合).以AD為邊作正方形ADEF,連接CF

1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),請直接寫出線段BDCF的數(shù)量關(guān)系:

2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其它條件不變,若AC=2,CD=1,則CF= ;

3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)AF分別在直線BC的兩側(cè),其它條件不變:

①請直接寫出CF、BCCD三條線段之間的關(guān)系: ;

②若連接正方形對角線AEDF,交點(diǎn)為O,連接OC,探究AOC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知每件獎品價(jià)格相同,每件獎品價(jià)格相同,老師要網(wǎng)購兩種獎品件,若購買獎品件、獎品件,則微信錢包內(nèi)的錢會差元;若購買獎品件、獎品件,則微信錢包的錢會剩余元,老師實(shí)際購買了獎品件,獎品件,則微信錢包內(nèi)的錢會剩余__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=-x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為2,0,tanBAO=2,以線段BC為直徑作M交AB于點(diǎn)D,過點(diǎn)B作直線lAC,與拋物線和M的另一個(gè)交點(diǎn)分別是E,F(xiàn)

1求該拋物線的函數(shù)表達(dá)式;

2求點(diǎn)C的坐標(biāo)和線段EF的長;

3如圖2,連接CD并延長,交直線l于點(diǎn)N,點(diǎn)P,Q為射線NB上的兩個(gè)動點(diǎn)點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合,線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由

查看答案和解析>>

同步練習(xí)冊答案