【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.

(1)求出點(diǎn)C的坐標(biāo);

(2)OQC是等腰直角三角形,則t的值為________;

(3)CQ平分OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.

【答案】(1)點(diǎn)C的坐標(biāo)為(2,2);(2)t的值為24;(3)直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式為y=-2x+6.

【解析】

(1)以組成二元一次方程組,解此方程組即可求得點(diǎn)C的坐標(biāo);

(2)由題意可知,∠COQ是銳角,由此可得若△COQ是等腰直角三角形,存在以下兩種情況:①∠CQO=90°;②∠OCQ=90°;根據(jù)兩種情況畫出圖形,結(jié)合已知條件分析解答即可求得對(duì)應(yīng)的t的值;

(3)由題意可知,當(dāng)點(diǎn)Q是線段OA的中點(diǎn)時(shí),CQ平分△OCA的面積,由此結(jié)合已知條件求得點(diǎn)線段OA的中點(diǎn)的坐標(biāo)即可求得此時(shí)CQ的解析式了.

(1) 解得:

∴點(diǎn)C的坐標(biāo)為(2,2).

(2) 由題意可知,∠COQ是銳角,由此可得若△COQ是等腰直角三角形存在以下兩種情況:①∠CQO=90°;②∠OCQ=90°;先分別解答如下:

I、如圖①,當(dāng)∠CQO=90°,CQ=OQ時(shí),

C(2,2),

∴OQ=CQ=2,解得:t=2;

II、如圖②,當(dāng)∠OCQ=90°,OC=CQ時(shí),過點(diǎn)CCMOA于點(diǎn)M,

C(2,2),

CM=OM=2,

QM=OM=2,

OQ=4,

t=4.

綜上所述,△OCQ是等腰直角三角形,t的值為24.

(3)令-x+3=0,得x=6,

A(6,0)

點(diǎn)Q的坐標(biāo)為(3,0)時(shí),CQ平分△OCA的面積

設(shè)直線CQ的函數(shù)表達(dá)式為y=kx+b.

C(2,2),Q(3,0)代入y=kx+b

,

解得k=-2,b=6,

當(dāng)直線CQ平分△OCA的面積時(shí),其對(duì)應(yīng)的函數(shù)表達(dá)式為y=-2x+6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形中,,,點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,且.

1_________(用含的代數(shù)式表示).

2)如圖,當(dāng)點(diǎn)從點(diǎn)開始運(yùn)動(dòng)的同時(shí),點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),是否存在這樣的值,使得以、為頂點(diǎn)的三角形與以、、為頂點(diǎn)的三角形全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)B(7,6),頂點(diǎn)A、C在坐標(biāo)軸上,矩形內(nèi)部一點(diǎn)D在雙曲線y=上,DEAB于點(diǎn)E,DFBC于點(diǎn)F,若四邊形DEBF為正方形,則點(diǎn)D的坐標(biāo)是( 。

A. (2,6) B. (3,4) C. (4,3) D. (6,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)走基層欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長(zhǎng)為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達(dá)采訪地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線y=x與反比例函數(shù)y=(k>0)的圖象在第一象限內(nèi)交于點(diǎn)A(2,m).

(1)求m、k的值;

(2)點(diǎn)By軸負(fù)半軸上,若△AOB的面積為2,求AB所在直線的函數(shù)表達(dá)式;

(3)將△AOB沿直線AB向上平移,平移后A、O、B的對(duì)應(yīng)點(diǎn)分別為A'、O'、B',當(dāng)點(diǎn)O'恰好落在反比例函數(shù)y=的圖象上時(shí),求點(diǎn)A'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,BP、CP分別是△ABC的外角∠CBD、∠BCE的角平分線,BQCQ分別是∠PBC、∠PCB的角平分線,BM、CN分別是∠PBD、∠PCE的角平分線,∠BACα

1)當(dāng)α40°時(shí),∠BPC   °,∠BQC   °;

2)當(dāng)α   °時(shí),BMCN;

3)如圖,當(dāng)α120°時(shí),BM、CN所在直線交于點(diǎn)O,求∠BOC的度數(shù);

4)在α60°的條件下,直接寫出∠BPC、∠BQC、∠BOC三角之間的數(shù)量關(guān)系:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過A(0,3),(,)兩點(diǎn).

(1)求b、c的值.

(2)二次函數(shù)的圖像與軸是否有公共點(diǎn)?若有,求公共點(diǎn)的坐標(biāo),若沒有,請(qǐng)說明情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究相似問題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:

甲:將邊長(zhǎng)為3、45的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對(duì)于兩人的觀點(diǎn),下列說法正確的是( )

A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案