【題目】如圖,在中,,,,點從點開始沿邊向點的速度移動,點從點開始沿邊向點的速度移動.

1)如果分別從同時出發(fā),那么幾秒后,的面積等于

2)如果分別從同時出發(fā),的面積能否等于?

3)如果分別從同時出發(fā),那么幾秒后,的長度等于?

【答案】1后,的面積等于;(2的面積不能等于.理由見解析;(3后,的長度等于.

【解析】

1)設經過x秒鐘,△PBQ的面積等于4平方厘米,根據點PA點開始沿AB邊向點B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動,表示出BPBQ的長可列方程求解;

2)設經過x秒鐘,△PBQ的面積等于4平方厘米,根據點PA點開始沿AB邊向點B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動,表示出BPBQ的長可列方程求解;

3)設經過x秒,點P,Q之間的距離為5cm,根據勾股定理列式求解即可;

后,.

1)根據三角形的面積公式列方程,

得:.

解得:,.

時,,不合題意,舍去.

所以后,的面積等于

2的面積不能等于.

理由:根據三角形的面積公式列方程,

得:,

整理,得:.

因為,

所以的面積不能等于.

3)根據勾股定理列方程,

得:.

解得:,(不符合題意,舍去).

所以后,的長度等于

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數(shù)量關系;

(2)若將△OCD繞O旋轉到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結論;

(3)若將△OCD由圖(1)的位置繞O順時針旋轉角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.

原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.

1)思路梳理

因為,所以把繞點逆時針旋轉90°,可使 重合.因為,所以,點共線.

根據 ,易證 ,得.請證明.

2)類比引申

如圖②,四邊形中,,,點分別在邊上,.都不是直角,則當滿足等量關系時,仍然成立,請證明.

3)聯(lián)想拓展

如圖③,在中,,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.

1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2

2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm

3)在(1)中,△PQB的面積能否等于7cm2?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利500元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經調查發(fā)現(xiàn),每件商品每降價10元,商場每天可多售出2件.設每件商品降價x元(x10的整數(shù)倍),據此信息,請回答:

1)商場日銷量增加  件,每件商品盈利  元;(用含x的代數(shù)式表示).

2)在上述條件不變且銷售正常的情況下,每件商品降價多少元時,商場日盈利可達到21000元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經過記錄分析發(fā)現(xiàn),當銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關系可近似地看作一次函數(shù),其圖象如圖所示.

(1)求y與x的函數(shù)關系式.

(2)設商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關系式;

(3)如果想要每月獲得2400元的利潤,那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;

(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使AOB的面積等于6,求點B的坐標;

(3)對于(2)中的點B,在此拋物線上是否存在點P,使POB=90°?若存在,求出點P的坐標,并求出POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,∠BAD=,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉角之后,所得射線與直線AD交于F點.試探究線段EBEF的數(shù)量關系.

小宇發(fā)現(xiàn)點E的位置,的大小都不確定,于是他從特殊情況開始進行探究.

1)如圖1,當==90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EMADM,ENABN.由角平分線的性質可知EM=EN,進而可得,并由全等三角形的性質得到EBEF的數(shù)量關系為

2)如圖2,當=60°,=120°時,

①依題意補全圖形;

②請幫小宇繼續(xù)探究(1)的結論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;

3)小宇在利用特殊圖形得到了一些結論之后,在此基礎上對一般的圖形進行了探究,設∠ABE=,若旋轉后所得的線段EFEB的數(shù)量關系滿足(1)中的結論,請直接寫出角,滿足的關系:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,,將繞點處開始按順時針方向旋轉,交邊(或)于點,交邊(或)于點,當旋轉至處時,停止旋轉.

1)特殊情形:如圖2,發(fā)現(xiàn)當過點時,PN也恰巧過點,此時 (填“≌”或“∽”);

2)類比探究:如圖3,在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案