【題目】一副直角三角板由一塊含30°的直角三角板與一塊等腰直角三角板組成,且含30°角的三角板的較長(zhǎng)直角邊與另一三角板的斜邊相等(如圖1)
(1)如圖1,這副三角板中,已知AB=2,AC= ,A′D=
(2)這副三角板如圖1放置,將△A′DC′固定不動(dòng),將△ABC通過(guò)旋轉(zhuǎn)或者平移變換可使△ABC的斜邊BC經(jīng)過(guò)△A′DC′′的直角頂點(diǎn)D.
方法一:如圖2,將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)角度α(0°<α<180°)
方法二:如圖3,將△ABC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度
方法三:如圖4,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)角度β(0°<β<180°)
請(qǐng)你解決下列問(wèn)題:
①根據(jù)方法一,直接寫(xiě)出α的值為: ;
②根據(jù)方法二,計(jì)算m的值;
③根據(jù)方法三,求β的值.
(3)若將△ABC從圖1位置開(kāi)始沿射線A′C′平移,設(shè)AA′=x,兩三角形重疊部分的面積為y,請(qǐng)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式和相應(yīng)的自變量x的取值范圍.
【答案】(1);(2)①15°;②;③30°;(3)
【解析】
(1)根據(jù)直角三角形中30°的直角邊所對(duì)的直角邊等于斜邊的一半,即可求得BC的長(zhǎng),然后根據(jù)勾股定理即可求得AC的長(zhǎng);
(2)①根據(jù)三角板的度數(shù)即可求解;
②作DH⊥A′C于H,易證△CDH∽△CBA,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,即可求得CH的長(zhǎng),進(jìn)而求得CC′;
③作DH⊥A′C′于H,AG⊥BC于G,可以證得Rt△AGD≌Rt△DHA,則BC∥AC′,利用平行線的性質(zhì)即可求解;
(3)分0<x≤,<x≤,<x≤2,x>2四種情況即可求解.
(1)∵直角△ABC中,∠BAC=30°,
∴BC=2AB=4,
∴AC==2,
在等腰直角直角△A′DC′中,A′C′=2,
∴A′D=A′C′=;
(2)①α=45°﹣30°=15°;
②作DH⊥A′C于H,則DH=A′C′=C′H=,
∵DH∥AB,
∴△CDH∽△CBA.
∴,即,
∴CH=3.
∴CC′=CH﹣C′H=3﹣,即m=CC′=3﹣;
③作DH⊥A′C′于H,AG⊥BC于G,
由已知:DH=,
AG×BC=AB×AC,
∴AG==,
∴AG=DH.
在Rt△AGD和Rt△DHA中:,
∴Rt△AGD≌Rt△DHA,
∴∠GDA=∠DAH=45°,
∴BC∥AC′,
∴β=∠BCA=30°;
(3)y=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個(gè)單位長(zhǎng)度到A1B1O1C1的位置,此時(shí)點(diǎn)A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿的高度.已知小亮站著測(cè)量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測(cè)量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號(hào))
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】文化是一個(gè)國(guó)家、一個(gè)民族的靈魂,近年來(lái),央視推出《中國(guó)詩(shī)詞大會(huì)》、《中國(guó)成語(yǔ)大會(huì)》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對(duì)這些欄目的喜愛(ài)情況,某學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國(guó)詩(shī)詞大會(huì)》(記為B)、《中國(guó)成語(yǔ)大會(huì)》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛(ài)的一個(gè)欄目,也可以寫(xiě)出一個(gè)自己喜愛(ài)的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求出扇形統(tǒng)計(jì)圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求出剛好選到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接正三角形,P為弧BC上一點(diǎn),PA交BC于D,已知PB=3,PC=6,則PD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.
(1)求k的值.
(2)把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC=2,∠B=75°,以C為旋轉(zhuǎn)中心將△ABC順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B落在AB上點(diǎn)D處時(shí),點(diǎn)A的對(duì)應(yīng)點(diǎn)為E,則陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,C,B三地依次在一條直線上,甲騎摩托車(chē)直接從C地前往B地;乙開(kāi)車(chē)以80km/h的速度從A地前往B地,在C地辦理事務(wù)耽誤1 h后,繼續(xù)前往B地.已知兩人同時(shí)出發(fā)且速度不變,又恰好同時(shí)到達(dá)B地.設(shè)出發(fā)x h后甲乙兩人離C地的距離分別為y1 kmy2 km,圖①中線段OD表示y1與x的函數(shù)圖像,線段EF表示y2與x函數(shù)的部分圖像.
(1)甲的速度為 km/h,點(diǎn)E坐標(biāo)為 ;
(2)求線段EF所表示的y2與x之間的函數(shù)表達(dá)式;
(3)設(shè)兩人相距S千米,在圖②所給的直角坐標(biāo)系中畫(huà)出S關(guān)于x的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A(4,0),點(diǎn)B是其頂點(diǎn),∠AOB=45°,OC⊥OB交此拋物線于點(diǎn)C,動(dòng)直線y=kx與拋物線交于點(diǎn)D,分別過(guò)點(diǎn)B、C作BE、CF垂直動(dòng)直線y=kx于點(diǎn)E、F.
(1)求此拋物線的解析式;
(2)當(dāng)直線y=kx把∠AOC分成的兩個(gè)角的度數(shù)之比恰好為1:2時(shí),求k的值;
(3)BE+CF是否存在最大值?若存在,請(qǐng)直接寫(xiě)出此最大值和此時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com