【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內(nèi)部(不包括邊界上),且P到四邊形的兩個頂點的距離相等.
(1)在圖甲中畫出一個ABCD.
(2)在圖乙中畫出一個四邊形ABCD,使∠D=90°,且∠A≠90°.(注:圖甲、乙在答題紙上)

【答案】
(1)

解:如圖①:


(2)

解:如圖②,


【解析】(1)先以點P為圓心、PB長為半徑作圓,會得到4個格點,再選取合適格點,根據(jù)平行四邊形的判定作出平行四邊形即可;
   。2)先以點P為圓心、PB長為半徑作圓,會得到8個格點,再選取合適格點記作點C,再以AC為直徑作圓,該圓與方格網(wǎng)的交點任取一個即為點D,即可得.本題主要考查了中垂線性質(zhì),平行四邊形的判定、性質(zhì)及圓周角定理的應(yīng)用,熟練掌握這些判定、性質(zhì)及定理并靈活運用是解題的關(guān)鍵.
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.

(1)如圖1,若E是BC的中點,∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲、乙兩人均從400米的環(huán)形跑道的A處出發(fā),各自以每秒6米和每秒8米的速度在跑道上跑步.

(1)若兩人同時出發(fā),背向而行,則經(jīng)過   秒鐘兩人第一次相遇;若兩人同時出發(fā),同向而行,則經(jīng)過   秒鐘乙第一次追上甲.

(2)若兩人同向而行,乙在甲出發(fā)10秒鐘后去追甲,經(jīng)過多少時間乙第二次追上甲.

(3)若讓甲先跑10秒鐘后乙開始跑,在乙用時不超過100的情況下,乙跑多少秒鐘時,兩人相距40米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階,下圖是其中的甲、乙兩段臺階的示意圖,圖中的數(shù)字表示每一級臺階的高度(單位:cm).請你用所學過的有關(guān)統(tǒng)計知識,回答下列問題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差

(1)分別求甲、乙兩段臺階的高度平均數(shù);

(2)哪段臺階走起來更舒服?與哪個數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關(guān)?

(3)為方便游客行走,需要陳欣整修上山的小路,對于這兩段臺階路.在總高度及臺階數(shù)不變的情況下,請你提出合理的整修建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七巧板是我們祖先的一項卓越創(chuàng)造,被譽為“東方魔板”,小明利用七巧板(如圖1所示)中各板塊的邊長之間的關(guān)系拼成一個凸六邊形(如圖2所示),則該凸六邊形的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD△ABC的一條高線.若E,F(xiàn)分別是CDBC上的動點,則BE+EF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CDAB于點D,BEAC于點E,CD、BE交于點O,且AO平分BAC,則圖中的全等三角形共有( 。

A. 1對 B. 2對 C. 3對 D. 4對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,一次函數(shù)y=kx-k與反比例函數(shù) (k≠0)的圖象大致是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.

(1)請補畫出它的俯視圖,并標出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標的尺寸(單位:厘米),計算這個幾何體的全面積.

查看答案和解析>>

同步練習冊答案