【題目】如圖,正方形OABC的邊長(zhǎng)為3,點(diǎn)AC分別在x軸,y軸的正半軸上,點(diǎn)D1,0)在OA上,POB上一動(dòng)點(diǎn),則PA+PD的最小值為_____

【答案】

【解析】

過(guò)D點(diǎn)作關(guān)于OB的對(duì)稱點(diǎn)D′,連接D′AOB于點(diǎn)P,由兩點(diǎn)之間線段最短可知D′A即為PA+PD的最小值,

由正方形的性質(zhì)可求出D′點(diǎn)的坐標(biāo),再根據(jù)OA3可求出A點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式即可求出D′A的值.

解:過(guò)D點(diǎn)作關(guān)于OB的對(duì)稱點(diǎn)D′,連接D′AOB于點(diǎn)P,由兩點(diǎn)之間線段最短可知D′A即為PA+PD的最小值,

D1,0),四邊形OABC是正方形,

D′點(diǎn)的坐標(biāo)為(0,1),A點(diǎn)坐標(biāo)為(3,0),

D′A=,即PA+PD的最小值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的等邊△ABO在平面直角坐標(biāo)系的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸上,以點(diǎn)O為旋轉(zhuǎn)中心,將△ABO按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OAB′,則點(diǎn)A′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,給出下列四組條件:①AB∥CDAD∥BC;②AB=CDAD=BC;③AO=COBO=DO;④AB∥CDAD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五邊形的頂點(diǎn)依次編號(hào)為1,2,3,4,5.若從某一頂點(diǎn)開(kāi)始,沿正五邊形的邊順時(shí)針?lè)较蛐凶,頂點(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長(zhǎng),則稱這種走法為一次移位.如:小宇在編號(hào)為3的頂點(diǎn)上時(shí),那么他應(yīng)走3個(gè)邊長(zhǎng),即從3→4→5→1為第一次移位,這時(shí)他到達(dá)編號(hào)為1的頂點(diǎn);然后從1→2為第二次移位.若小宇從編號(hào)為4的頂點(diǎn)開(kāi)始,第2018移位后,那么他所處的頂點(diǎn)的編號(hào)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)長(zhǎng)方形紙片沿EF折疊后,點(diǎn)DC分別落在D′,C′的位置.若∠AED=30°,則∠BFC′的度數(shù)為_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Aa0),Cb,2),且滿足,過(guò)C軸于B

1)求a,b的值;

2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說(shuō)明理由.

3)若過(guò)BBDACy軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,

①求:∠CAB+∠ODB的度數(shù);

②求:∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)對(duì)每個(gè)員工在當(dāng)月生產(chǎn)某種產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:設(shè)產(chǎn)品件數(shù)為x(單位:件),企業(yè)規(guī)定:當(dāng)x<15時(shí)為不稱職;當(dāng)15≤x<20時(shí)為基本稱職;當(dāng)20≤x<25為稱職;當(dāng)x≥25時(shí)為優(yōu)秀.解答下列問(wèn)題

(1)試求出優(yōu)秀員工人數(shù)所占百分比;
(2)計(jì)算所有優(yōu)秀和稱職的員工中月產(chǎn)品件數(shù)的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)員工的工作積極性,企業(yè)決定制定月產(chǎn)品件數(shù)獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的員工將受到獎(jiǎng)勵(lì).如果要使得所有優(yōu)秀和稱職的員工中至少有一半能獲獎(jiǎng),你認(rèn)為這個(gè)獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少件合適?簡(jiǎn)述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面文字,根據(jù)所給信息解答下面問(wèn)題:把幾個(gè)數(shù)用大括號(hào)括起來(lái),中間用逗號(hào)隔開(kāi),如:{3,4}{3,6,818},其中大括號(hào)內(nèi)的數(shù)稱其為集合的元素.如果一個(gè)集合滿足:只要其中有一個(gè)元素a,使得﹣2a+4也是這個(gè)集合的元素,這樣的集合稱為條件集合.例如;{3,﹣2},因?yàn)椹?/span>2×3+4=﹣2,﹣2恰好是這個(gè)集合的元素所以呂{3,﹣2}是條件集合:例如;(﹣2,98,},因?yàn)椹?/span>2×(﹣2+48,8恰好是這個(gè)集合的元素,所以{2,9,8,}是條件集合.

1)集合{4,12}是否是條件集合?

2)集合{,﹣}是否是條件集合?

3)若集合{8,n}{m}都是條件集合.求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式: , ,給出定義如下:

我們稱使等式成立的一對(duì)有理數(shù) 共生有理數(shù)對(duì),記為( ),如:數(shù)對(duì)(, ),(, ),都是共生有理數(shù)對(duì)

1判斷數(shù)對(duì)( ),(, 是不是共生有理數(shù)對(duì)”,寫(xiě)出過(guò)程;

(2)若( )是共生有理數(shù)對(duì),求的值;

(3)若( )是共生有理數(shù)對(duì),則( 共生有理數(shù)對(duì)(填不是);說(shuō)明理由;

(4)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的 共生有理數(shù)對(duì) (注意:不能與題目中已有的共生有理數(shù)對(duì)重復(fù))

查看答案和解析>>

同步練習(xí)冊(cè)答案