【題目】如圖,在△ABC中.AC=BC=5.AB=6.CD是AB邊中線.點(diǎn)P從點(diǎn)C出發(fā),以每秒2.5個(gè)單位長(zhǎng)度的速度沿C-D-C運(yùn)動(dòng).在點(diǎn)P出發(fā)的同時(shí),點(diǎn)Q也從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊CA向點(diǎn)A運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)用含t的代數(shù)式表示CP、CQ的長(zhǎng)度.
(2)用含t的代數(shù)式表示△CPQ的面積.
(3)當(dāng)△CPQ與△CAD相似時(shí),直接寫出t的取值范圍.
【答案】(1)當(dāng)0<t≤時(shí),CP=2.5t,CQ=2t;當(dāng)時(shí),CP=8-2.5t,CQ=2t.
(2)當(dāng)0<t≤時(shí),S△CPQ=PCsin∠ACDCQ=×2.5t××2t=;當(dāng)時(shí),S△CPQ=PCsin∠ACDCQ=×(8-2.5t)××2t=.
(3)0<t≤或s
【解析】
(1)分兩種情形:當(dāng)0<t≤時(shí),當(dāng)<t時(shí),分別求解即可.
(2)分兩種情形:當(dāng)0<t≤時(shí),當(dāng)<t≤時(shí),根據(jù)S△CPQ=PCsin∠ACDCQ分別求解即可.
(3)分兩種情形:當(dāng)0<t≤,可以證明△QCP∽△DCA,當(dāng)<t,∠QPC=90°時(shí),△QPC∽△ADC,構(gòu)建方程求解即可.
解:(1)∵CA=CB,AD=BD=3,
∴CD⊥AB,
∴∠ADC=90°,
∴CD===4,
當(dāng)0<t≤時(shí),CP=2.5t,CQ=2t,
當(dāng)時(shí),CP=8-2.5t,CQ=2t.
(2)∵sin∠ACD==,
∴當(dāng)0<t≤時(shí),S△CPQ=PCsin∠ACDCQ=×2.5t××2t=
當(dāng)時(shí),S△CPQ=PCsin∠ACDCQ=×(8-2.5t)××2t=.
(3)①當(dāng)0<t≤時(shí),
∵CP=2.5t,CQ=2t,
∴=,
∵=,
∴,
∵∠PCQ=∠ACD,
QCP∽△DCA,
∴0<t≤時(shí),△QCP∽△DCA,
②當(dāng)時(shí),當(dāng)∠QPC=90°時(shí),△QPC∽△ADC,
∴,
∴,
解得:,
綜上所述,滿足條件的t的值為:0<t≤或s時(shí),△QCP∽△DCA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過(guò)點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線上一點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;
(3)若m>,當(dāng)∠APB為直角時(shí),將該拋物線向左或向右平移t(0<t<)個(gè)單位,點(diǎn)C、P平移后對(duì)應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長(zhǎng)最短?若存在,求t的值并說(shuō)明拋物線平移的方向;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批彩色彈力球的質(zhì)量檢驗(yàn)結(jié)果如下表:
抽取的彩色彈力球數(shù)n | 500 | 1000 | 1500 | 2000 | 2500 |
優(yōu)等品頻數(shù)m | 471 | 946 | 1426 | 1898 | 2370 |
優(yōu)等品頻率 | 0.942 | 0.946 | 0.951 | 0.949 | 0.948 |
(1)請(qǐng)?jiān)趫D中完成這批彩色彈力球“優(yōu)等品”頻率的折線統(tǒng)計(jì)圖
(2)這批彩色彈力球“優(yōu)等品”概率的估計(jì)值大約是多少?(精確到0.01)
(3)從這批彩色彈力球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除了顏色外都相同,將它們放入一個(gè)不透明的袋子中,求從袋子中摸出一個(gè)球是黃球的概率.
(4)現(xiàn)從第(3)問(wèn)所說(shuō)的袋子中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個(gè)黃球的概率為,求取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖l,在四邊形ABCD中.∠DAB被對(duì)角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.
(2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB 則∠DAB = .
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4.BC=2.∠D=90°,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們用a表示不大于 a 的最大整數(shù),用 a 表示大于 a 的最小整數(shù).例如:2.5 2 ,3 3 , 2.5 3 ;<2.5> 3 ,<4> 5 ,< 1.5> 1 .解決下列問(wèn)題:
(1) 4.5 ,< 3.5> .
(2)若x 2 ,則 < x> 的取值范圍是 ;若< y > 1,則 y 的取值范圍是 .
(3)已知 x, y 滿足方程組;求 x, y 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為數(shù)軸上的兩個(gè)點(diǎn),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為.
(1)現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)處相遇,求點(diǎn)表示的數(shù);
(2)若電子螞蟻從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)另一電子螞蟻恰好從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)處相遇,求點(diǎn)表示的數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com