【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為(
A.6
B.12
C.32
D.64

【答案】C
【解析】解:∵△A1B1A2是等邊三角形, ∴A1B1=A2B1 , ∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3 , B1A2∥B2A3
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2 , B3A3=2B2A3 ,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A6B6=32B1A2=32.
故選:C.

【考點精析】利用等邊三角形的性質(zhì)和含30度角的直角三角形對題目進行判斷即可得到答案,需要熟知等邊三角形的三個角都相等并且每個角都是60°;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若x2﹣x﹣2=0,則(2x+3)(2x﹣5)+2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的內(nèi)角∠ABC與外角∠ACD的平分線交于點E,且CE∥AB,AC與BE交于點E,則下列結(jié)論錯誤的是(  )

A.CB=CE
B.∠A=∠ECD
C.∠A=2∠E
D.AB=BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應用題:
近年來,我國逐步完善養(yǎng)老金保險制度.甲、乙兩人計劃用相同的年數(shù)分別繳納養(yǎng)老保險金15萬元和10萬元,甲計劃比乙每年多繳納養(yǎng)老保險金0.2萬元.求甲、乙兩人計劃每年分別繳納養(yǎng)老保險金多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上.

(1)B點關(guān)于y軸的對稱點坐標為
(2)將△AOB向左平移3個單位長度,再向上平移2個單位長度得到△A1O1B1 , 請畫出△A1O1B1;
(3)在(2)的條件下,△AOB邊AB上有一點P的坐標為(a,b),則平移后對應點P1的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家與學校在同一直線上且相距720m,一天早上他和弟弟都勻速步行去上學,弟弟走得慢,先走1分鐘后,小明才出發(fā),已知小明的速度是80m/分,以小明出發(fā)開始計時,設時間為x(分),兄弟兩人之間的距離為ym,圖中的折線是y與x的函數(shù)關(guān)系的部分圖象,根據(jù)圖象解決下列問題:

(1)弟弟步行的速度是m/分,點B的坐標是;
(2)線段AB所表示的y與x的函數(shù)關(guān)系式是;
(3)試在圖中補全點B以后的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,要使四邊形ABCD為平行四邊形,則應添加的條件是 . (添加一個條件即可,不添加其它的點和線).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙FBD于點C,交AD與點E,CG⊥AD于點G

1)求證:GC⊙F的切線;

2)填空:△BCF的面積為15,則△BDA的面積為

∠GCD的度數(shù)為 時,四邊形EFCD是菱形.

查看答案和解析>>

同步練習冊答案