【題目】如圖,在△ABC中,AD⊥BC于D,BE⊥AC于E,M為AB邊的中點,連結(jié)ME、MD、ED,設(shè)AB=10,∠DBE=30°,則△EDM的面積為____________
【答案】
【解析】
根據(jù)條件可以判斷△ABE和△ADB是直角三角形,且EM和DM分別時他們斜邊上的中線,證明∠EMD=2∠DAC=60°,從而可得△DME是邊長為5的等邊三角形即可得出答案.
解:∵在△ABC中,AD⊥BC,垂足為點D,
BE⊥AC,垂足為點E,
∴△ABE,△ADB是直角三角形,
∴EM,DM分別是它們斜邊上的中線,
EM=DM=AB,
∵ME=AB=MA,
∴∠MAE=∠MEA.
∴∠BME=2∠MAE,
同理,MD=AB=MA,
∴∠MAD=∠MDA,
∴∠BMD=2∠MAD,
∴∠EMD=∠BME-∠BMD=2∠MAE-2∠M
所以△DEM是邊長為5的等邊三角形,所以
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家今年種植的草莓喜獲豐收,采摘上市20天全部銷售完,爸爸讓他對今年的銷售情況進行跟蹤記錄,小明利用所學(xué)的數(shù)學(xué)知識將記錄情況繪成圖象(所得圖象均為線段),日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,草莓的價格w(單位:元/千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示.
(1)觀察圖象,直接寫出當(dāng)0≤x≤11時,日銷售量y與上市時間x之間的函數(shù)解析式為 ;
當(dāng)11≤x≤20時,日銷售量y與上市時間x之間的函數(shù)解析式為 .
(2)試求出第11天的銷售金額;
(3)若上市第15天時,爸爸把當(dāng)天能銷售的草莓批發(fā)給了鄰居馬叔叔,批發(fā)價為每千克15元,馬叔叔到市場按照當(dāng)日的價格w元/千克將批發(fā)來的草莓全部銷售完,他在銷售的過程中,草莓總質(zhì)量損耗了2%.那么,馬叔叔支付完來回車費20元后,當(dāng)天能賺到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店老板到廠家選購、兩種品牌的羽絨服,品牌羽絨服每件進價比品牌羽絨服每件進價多元,若用元購進種羽絨服的數(shù)量是用元購進種羽絨服數(shù)量的倍.
(1)求、兩種品牌羽絨服每件進價分別為多少元?
(2)若品牌羽絨服每件售價為元,品牌羽絨服每件售價為元,服裝店老板決定一次性購進、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進品牌羽絨服多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學(xué)的函數(shù)圖象.同時我們也學(xué)習(xí)了絕對值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當(dāng)x=2時,y=﹣3;x=0時,y=﹣2.
(1)求這個函數(shù)的表達式;
(2)用列表描點的方法畫出該函數(shù)的圖象;請你先把下面的表格補充完整,然后在下圖所給的坐標(biāo)系中畫出該函數(shù)的圖象;
x | … | ﹣6 | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
y | … |
| 0 | ﹣1 | ﹣2 | ﹣3 | ﹣2 |
| … |
(3)觀察這個函數(shù)圖象,并寫出該函數(shù)的一條性質(zhì);
(4)已知函數(shù)y= (x>0)的圖象如圖所示,與y=|kx﹣1|+b的圖象兩交點的坐標(biāo)分別是(2+4,-2),(2﹣2,﹣﹣1),結(jié)合你畫的函數(shù)圖象,直接寫出|kx﹣1|+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,證明:DE=DF
(2)如圖2,將∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由.
(3)如圖3,將∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.在△AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系(如圖所示).點P自點A出發(fā)沿線段AB勻速運動到點B停止,同時點D自原點O出發(fā)沿x軸正方向勻速運動,在點P、D運動的過程中,始終滿足PO=PD,過點O、D向AB作垂線,垂足分別為點C、E,設(shè)OD的長為x.
(1)求AP的長(用含x的代數(shù)式表示)
(2)在點P、D的運動過程中,線段PC與DE是否相等?若相等,請給予證明;若不相等,請說明理由;
(3)設(shè)以點P、O、D、E為頂點的四邊形的面積為y,請直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)將△ABC向上平移3個單位長度,畫出平移后的△A1B1C1;
(2)寫出A1、C1的坐標(biāo);
(3)將△A1B1C1繞B1逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2,求線段B1C1旋轉(zhuǎn)過程中掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和B,與y軸的正半軸交于點C,下列結(jié)論:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正確的個數(shù)為( 。
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩邊在坐標(biāo)軸上,點為平面直角坐標(biāo)系的原點,以軸上的某一點為位似中心,作位似圖形,且點的坐標(biāo),則位似中心的坐標(biāo)為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com