【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點,點P由點A出發(fā),按A→B→C→M的順序運動.設(shè)點P經(jīng)過的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖象是( )
A.
B.
C.
D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是直線y=2x+3上的動點,過點M作MN垂直于x軸于點N,y軸上是否存在點P,使得△MNP為等腰直角三角形,則符合條件的點P有(提示:直角三角形斜邊上的中線等于斜邊的一半)( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A、B、C、D四點的坐標依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy中,對于點P(x,y),以及兩個無公共點的圖形W1和W2 , 若在圖形W1和W2上分別存在點M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點,則稱點M 和N被點P“關(guān)聯(lián)”,并稱點P為圖形W1和W2的一個“中位點”,此時P,M,N三個點的坐標滿足x= ,y=
(1)已知點A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對于線段AB和線段CD,若點A和C被點P“關(guān)聯(lián)”,則點P的坐標為;
②線段AB和線段CD的一“中位點”是Q (2,﹣ ),求這兩條線段上被點Q“關(guān)聯(lián)”的兩個點的坐標;
(2)如圖1,已知點R(﹣2,0)和拋物線W1:y=x2﹣2x,對于拋物線W1上的每一個點M,在拋物線W2上都存在點N,使得點N和M 被點R“關(guān)聯(lián)”,請在圖1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請在圖2中畫出由正方形EFGH和⊙T的所有“中位點”組成的圖形(若涉及平面中某個區(qū)域時可以用陰影表示),并直接寫出該圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
根據(jù)聯(lián)合國《人口老齡化及其社會經(jīng)濟后果》中提到的標準,當一個國家或地區(qū)65 歲及以上老年人口數(shù)量占總?cè)丝诒壤^7%時,意味著這個國家或地區(qū)進入老齡化.從經(jīng)濟角度,一般可用“老年人口撫養(yǎng)比”來反映人口老齡化社會的后果.所謂“老年人口撫養(yǎng)比”是指某范圍人口中,老年人口數(shù)(65 歲及以上人口數(shù))與勞動年齡人口數(shù)(15﹣64 歲人口數(shù))之比,通常用百分比表示,用以表明每100 名勞動年齡人口要負擔多少名老年人.
以下是根據(jù)我國近幾年的人口相關(guān)數(shù)據(jù)制作的統(tǒng)計圖和統(tǒng)計表.
2011﹣2014 年全國人口年齡分布圖
2011﹣2014 年全國人口年齡分布表
2011年 | 2012年 | 2013年 | 2014年 | |
0﹣14歲人口占總?cè)丝诘陌俜直?/span> | 16.4% | 16.5% | 16.4% | 16.5% |
15﹣64歲人口占總?cè)丝诘陌俜直?/span> | 74.5% | 74.1% | 73.9% | 73.5% |
65歲及以上人口占總?cè)丝诘陌俜直?/span> | m | 9.4% | 9.7% | 10.0% |
根據(jù)以上材料解答下列問題:
(1)2011 年末,我國總?cè)丝诩s為億,全國人口年齡分布表中m的值為;
(2)若按目前我國的人口自然增長率推測,到2027 年末我國約有14.60 億人.假設(shè)0﹣14歲人口占總?cè)丝诘陌俜直纫恢狈(wěn)定在16.5%,15﹣64歲人口一直穩(wěn)定在10 億,那么2027 年末我國0﹣14歲人口約為億,“老年人口撫養(yǎng)比”約為;(精確到1%)
(3)2016 年1 月1 日起我國開始實施“全面二胎”政策,一對夫妻可生育兩個孩子,在未來10年內(nèi),假設(shè)出生率顯著提高,這(填“會”或“不會”)對我國的“老年人口撫養(yǎng)比”產(chǎn)生影響.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;
(1)小文認為菱形是特殊的“箏形”,你認為他的判斷正確嗎?
(2)小文根據(jù)學習幾何圖形的經(jīng)驗,通過觀察、實驗、歸納、類比、猜想、證明等方法,對AB≠BC的“箏形”的性質(zhì)和判定方法進行了探究.下面是小文探究的過程,請補充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對角相等,并進行了證明,請你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請再寫出這類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是AC上一點,聯(lián)結(jié)BD,∠CBD=∠A.
(1)求證:△CBD∽△CAB;
(2)若D是AC中點,CD=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB′C′D′,圖中陰影部分的面積為( )
A.
B.
C.1﹣
D.1﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com