【題目】若等腰ABC的周長為20,AB=8,則該等腰三角形的腰長為( ).

A.8B.6C.4D.86

【答案】D

【解析】

AB=8可能是腰,也可能是底邊,分類討論,結合等腰三角形的兩條腰相等計算出三邊,并用三角形三邊關系檢驗即可.

解:若AB=8是腰,則底長為20-8-8=4,三邊為4、8、8,能組成三角形,此時腰長為8;

AB=8是底,則腰長為(20-8÷2=6,三邊為66、8,能組成三角形,此時腰長為6;

綜述所述:腰長為 86.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線經(jīng)過點M(1,3)和N(3,5)

(1)試判斷該拋物線與x軸交點的情況;

(2)平移這條拋物線,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A、O、B為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P1(﹣2y1),P21y2)是函數(shù)y=﹣2x+1圖象上的兩個點,則y1y2的大小關系是(  )

A.y1y2B.y1y2C.y1y2D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側),將△BCG紙片翻轉過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側)則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)1,0,﹣1,﹣2中,最大的數(shù)是(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.a2+a3=a5
B.a2a3=a6
C.a3+a2=a
D.(a23=a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.

(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;

(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖所示),

操作一:(1)折疊紙面,使1表示的點與1表示的點重合,回答一下問題:

2表示的點與______表示的點重合;②π表示的點與______表示的點重合。

操作二:(2)折疊紙面,使1表示的點與3表示的點重合,回答以下問題:

①5表示的點與數(shù)_____表示的點重合;②表示的點與數(shù)_____表示的點重合

操作三:(3)已知在數(shù)軸上點A表示的數(shù)是a,點A移動5個單位,此時點A表示的數(shù)和a是互為相反數(shù),求a的值.

查看答案和解析>>

同步練習冊答案