如圖,已知四邊形ABCD是菱形,DE⊥AB,DF⊥BC,請(qǐng)說(shuō)明BE與BF的數(shù)量關(guān)系.

【答案】分析:根據(jù)菱形的性質(zhì)及三角形全等的判定可得出△ADE≌△CDF,繼而可判斷出兩者的關(guān)系.
解答:解:EB=BF.
在△ADE和△CDF中,
∵四邊形ABCD是菱形,
∴∠A=∠C,AD=CD.
又DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90?
∴△ADE≌△CDF.
∴AE=CF.
∴EB與BF相等.
點(diǎn)評(píng):本題考查菱形的性質(zhì)及三角形全等的性質(zhì),難度不大,解答本題的關(guān)鍵是熟練掌握菱形的基本性質(zhì)及三角形全等的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長(zhǎng)線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案