【題目】(3分)如圖,坐標(biāo)原點O為矩形ABCD的對稱中心,頂點A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點O為位似中心,點A′,B′分別是點A,B的對應(yīng)點,.已知關(guān)于x,y的二元一次方程(m,n是實數(shù))無解,在以m,n為坐標(biāo)(記為(m,n)的所有的點中,若有且只有一個點落在矩形A′B′C′D′的邊上,則kt的值等于( )
A. B.1 C. D.
【答案】D.
【解析】
試題分析:∵矩形A′B′C′D′與矩形ABCD是位似圖形,,頂點A的坐標(biāo)為(1,t),∴點A′的坐標(biāo)為(k,kt),∵關(guān)于x,y的二元一次方程(m,n是實數(shù))無解,∴mn=3,且,即(m≠2),∵以m,n為坐標(biāo)(記為(m,n)的所有的點中,有且只有一個點落在矩形A′B′C′D′的邊上,∴反比例函數(shù)的圖象只經(jīng)過點A′或C′,由,可得:mnx﹣3x+4=3n+1,
(1)若反比例函數(shù)的圖象經(jīng)過點A′,∵mn=3,3x﹣3x+4=2kt+1,解答kt=,
(2)若反比例函數(shù)的圖象經(jīng)過點C′,∵mn=3,3x﹣3x+4=﹣2kt+1,解答kt=,
∵k>0,t>0,∴kt=不符合題意,∴kt=.故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠C=α,∠EAC+∠FBC=β
(1)如圖①,AM是∠EAC的平分線,BN是∠FBC的平分線,若AM∥BN,則α與β有何關(guān)系?并說明理由.
(2)如圖②,若∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,試探究∠APB與α、β的關(guān)系是______.(用α、β表示)
(3)如圖③,若α≥β,∠EAC與∠FBC的平分線相交于P1,∠EAP1與∠FBP1的平分線交于P2 ;依此類推,則∠P5=______.(用α、β表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有、、三家工廠依次坐落在一條筆直的公路邊,甲、乙兩輛運貨卡車分別從、工廠同時出發(fā),沿公路勻速駛向工廠,最終到達工廠,設(shè)甲、乙兩輛卡車行駛后,與工廠的距離分別為、().、與函數(shù)關(guān)系如圖所示,根據(jù)圖象解答下列問題.(提示:圖中較粗的折線表示的是與的函數(shù)關(guān)系.)
()、兩家工廠之間的距離為__________ , __________, 點坐標(biāo)是__________.
()求甲、乙兩車之間的距離不超過時, 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:如圖,E點為DF上的點,B為AC上的點, ,那么,請完成它成立的理由
解: ______
又
______
______ ______ ______
______
______
______
______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠BDC,∠2+∠3=180°.
(1)請你判斷DA與CE的位置關(guān)系,并說明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,試求∠FAB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列關(guān)于自然數(shù)的等式:
a1:32-12=8×1;
a2:52-32=8×2;
a3:72-52=8×3;……
根據(jù)上述規(guī)律解決下列問題:
⑴寫出第a4個等式:___________;
⑵寫出你猜想的第an個等式(用含n的式子表示),并驗證其正確性;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能化簡(x-1)(x99+x98+x97+…+x+1)嗎?遇到這樣的問題,我們可以先從簡單的情形入手:
分別計算下列各式的值:
①(x-1)(x+1)=x2-1;
②(x-1)(x2+x+1)=x3-1;
③(x-1)(x3+x2+x+1)=x4-1;…
由此我們可以得到:(x-1)(x99+x98+x97+…+x+1)=________________;
請你利用上面的結(jié)論,完成下面三題的計算:
⑴299+298+297+…+2+1;
⑵(-2)50+(-2)49+(-2)48+…+(-2)+1
⑶已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投資某個工程項目,現(xiàn)在甲、乙兩個工程隊有能力承包這個項目.公司調(diào)查發(fā)現(xiàn):乙隊單獨完成工程的時間是甲隊的倍;甲、乙兩隊合作完成工程需要天;甲隊每天的工作費用為元、乙隊每天的工作費用為元.根據(jù)以上信息,從節(jié)約資金的角度考慮,公司應(yīng)選擇哪個工程隊、應(yīng)付工程隊費用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BE⊥AC于點E,點D在AC上,且AD=AB,AK平分∠CAB,交線段BE于點F,交邊CB于點K.
(1)在圖中找出一對全等三角形,并證明;
(2)求證:FD∥BC .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com