(2005•威海)已知拋物線y=(k-1)x2+(2+4k)x+1-4k過點A(4,0).
(1)試確定拋物線的解析式及頂點B的坐標;
(2)在y軸上確定一點P,使線段AP+BP最短,求出P點的坐標;
(3)設M為線段AP的中點,試判斷點B與以AP為直徑的⊙M的位置關系,并說明理由.
【答案】分析:(1)把A點坐標代入拋物線可得出k值以及點B坐標.
(2)由題意可得點A關于y軸對稱的坐標A′,易求解析式.
(3)本題要靠輔助線的幫助.過點B作BE⊥OA于E,得出E為OA的中點,求出AP的長度,則可判斷.
解答:解:(1)所求拋物線的解析式為:y=-x2+3x=-(x-2)2+3.
頂點B的坐標為(2,3).

(2)∵y=-x2+3x,
∴y=0時,解得x=4或0,
∴點A的坐標是(4,0),
∴關于y軸的對稱點A′的坐標為(-4,0).
則直線A'B與y軸的交點就是P點.
設直線A'B的解析式為y=x+2.
∴P的坐標為(0,2).

(3)過點B作BE⊥OA于E,則BE∥OP.
由拋物線的對稱性可知,點E為OA的中點.
直線BE與AP的交點就是AP的中點M.
AP=2,⊙M的半徑R=
BM=3-1=2<,
∴點B在⊙M的內(nèi)部.
點評:本題考查的是圓的相關知識以及二次函數(shù)的綜合運用,難度中等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•威海)已知拋物線y=(k-1)x2+(2+4k)x+1-4k過點A(4,0).
(1)試確定拋物線的解析式及頂點B的坐標;
(2)在y軸上確定一點P,使線段AP+BP最短,求出P點的坐標;
(3)設M為線段AP的中點,試判斷點B與以AP為直徑的⊙M的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省常州市中考數(shù)學模擬試卷(解析版) 題型:填空題

(2005•威海)已知雙曲線y=經(jīng)過點(-1,3),如果A(a1,b1),B(a2,b2)兩點在該雙曲線上,且a1<a2<0,那么b1     b2(選填“>”、“=”、“<”).

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2005•威海)已知:如圖1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直線AD,BC相交于點E.
(1)求∠E的度數(shù);
(2)如果點C,D在⊙O上運動,且保持弦CD的長度不變,那么,直線AD,BC相交所成銳角的大小是否改變?試就以下三種情況進行探究,并說明理由(圖形未畫完整,請你根據(jù)需要補全).
①如圖2,弦AB與弦CD交于點F;
②如圖3,弦AB與弦CD不相交;
③如圖4,點B與點C重合.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省威海市中考數(shù)學試卷(解析版) 題型:解答題

(2005•威海)已知:如圖1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直線AD,BC相交于點E.
(1)求∠E的度數(shù);
(2)如果點C,D在⊙O上運動,且保持弦CD的長度不變,那么,直線AD,BC相交所成銳角的大小是否改變?試就以下三種情況進行探究,并說明理由(圖形未畫完整,請你根據(jù)需要補全).
①如圖2,弦AB與弦CD交于點F;
②如圖3,弦AB與弦CD不相交;
③如圖4,點B與點C重合.

查看答案和解析>>

同步練習冊答案