一組數(shù)據(jù):-2,1,1,0,2,1.則這組數(shù)據(jù)的眾數(shù)是( )
A.-2 B.0 C.1 D.2
科目:初中數(shù)學(xué) 來源: 題型:
在Rt△ABC中,∠C=90°,P是BC邊上不同于B、C的一動點,過P作PQ⊥AB,垂足為Q,連接AP.
(1)試說明不論點P在BC邊上何處時,都有△PBQ與△ABC相似;
(2)若AC=3,BC=4,當(dāng)BP為何值時,△AQP面積最大,并求出最大值;
(3)在Rt△ABC中,兩條直角邊BC、AC滿足關(guān)系式BC=λAC,是否存在一個λ的值,使Rt△AQP既與Rt△ACP全等,也與Rt△BQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知兩條平行線l1、l2之間的距離為6,截線CD分別交l1、l2于C、D兩點,一直角的頂點P在線段CD上運動(點P不與點C、D重合),直角的兩邊分別交l1、l2與A、B兩點.
(1)操作發(fā)現(xiàn)
如圖1,過點P作直線l3∥l1,作PE⊥l1,點E是垂足,過點B作BF⊥l3,點F是垂足.此時,小明認(rèn)為△PEA∽△PFB,你同意嗎?為什么?
(2)猜想論證
將直角∠APB從圖1的位置開始,繞點P順時針旋轉(zhuǎn),在這一過程中,試觀察、猜想:當(dāng)AE滿足什么條件時,以點P、A、B為頂點的三角形是等腰三角形?在圖2中畫出圖形,證明你的猜想.
(3)延伸探究
在(2)的條件下,當(dāng)截線CD與直線l1所夾的鈍角為150°時,設(shè)CP=x,試探究:是否存在實數(shù)x,使△PAB的邊AB的長為4?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列式子從左到右變形是因式分解的是( )
A.a(chǎn)2+4a-21=a(a+4)-21 B.a(chǎn)2+4a-21=(a-3)(a+7)
C.(a-3)(a+7)=a2+4a-21 D.a(chǎn)2+4a-21=(a+2)2-25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=k1x+b(k1、b為常數(shù),且k1≠0)的圖象與反比例函數(shù)y2=(k2為常數(shù),且k2≠0)的圖象都經(jīng)過點A(2,3).則當(dāng)x>2時,y1與y2的大小關(guān)系為( 。
| A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 以上說法都不對 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線 ()位于軸上方的圖象記為1 ,它與軸交于1 、兩點,圖象2與1關(guān)于原點對稱, 2與軸的另一個交點為2 ,將1與2同時沿軸向右平移12的長度即可得3與4 ;再將3與4 同時沿軸向右平移12的長度即可得5與6 ; ……按這樣的方式一直平移下去即可得到一系列圖象1 ,2 ,…… ,n ,我們把這組圖象稱為“波浪拋物線”.
⑴ 當(dāng)時,
① 求圖象1的頂點坐標(biāo);
② 點(2014 , -3) (填“在”或“不在”)該“波浪拋物線”上;若圖象n 的頂點n的橫坐標(biāo)為201,則圖象n 對應(yīng)的解析式為______ ,其自變量的取值范圍為_______.
⑵ 設(shè)圖象m、m+1的頂點分別為m 、m+1 (m為正整數(shù)),軸上一點Q的坐標(biāo)為(12 ,0).試探究:當(dāng)為何值時,以、m 、m+1、Q四點為頂點的四邊形為矩形?并直接寫出此時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com