【題目】如圖,圓內(nèi)接四邊形ABCD的BA,CD的延長(zhǎng)線(xiàn)交于P,AC,BD交于E,則圖中相似三角形有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
【答案】C
【解析】
根據(jù)有兩個(gè)角對(duì)應(yīng)相等的三角形是相似三角形即可解題.
根據(jù)同弧所對(duì)的圓周角相等可得,∠EAB=∠EDC,∠ABE=∠ECD,所以△ABE∽△DCE;
∠ADE=∠BCE,∠DAE=∠CBE,所以△ADE∽△BCE;
∠APC=∠DPB,∠ACP=∠DBP,所以△PAC∽△PDB;
根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ)可得∠ADC+∠CBP=180°,因?yàn)?/span>∠ADC+∠ADP=180°,所以∠ADP=∠CBP,又因?yàn)?/span>∠APD=∠CPB,所以△ADP∽△CBP .綜上所述,相似三角形共有4對(duì).
故本題正確答案為C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿(mǎn)足△PBE∽△DBC,若△APD是等腰三角形,則PE的長(zhǎng)為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過(guò) A 作 y 軸的垂線(xiàn),交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,點(diǎn)是的中點(diǎn),的平分線(xiàn)交于點(diǎn),將沿折疊,點(diǎn)恰好落在上點(diǎn)處,延長(zhǎng),交于點(diǎn).有下列四個(gè)結(jié)論:①垂直平分;②平分;③;④.其中,將正確結(jié)論的序號(hào)全部選對(duì)的是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(a≠0)的圖象如圖,分析下列四個(gè)結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,E為BC邊上的一點(diǎn).連結(jié)AE.
(1)若AB=AE, 求證:∠DAE=∠D;
(2)若點(diǎn)E為BC的中點(diǎn),連接BD,交AE于F,求EF︰FA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,點(diǎn)F在BC上,連DF與AB的延長(zhǎng)線(xiàn)交于點(diǎn)G.
(1)求證:△CDF∽△BGF;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),過(guò)F作EF∥CD交AD于點(diǎn)E,若AB=6cm,EF=4cm,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽(yáng)光線(xiàn)與水平地面的夾角為α,當(dāng)α=56.3°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的NF這層上曬太陽(yáng).
(1)求樓房的高度約為多少米?
(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)小貓能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90,AB=AC,AD⊥BC于點(diǎn)D,P是線(xiàn)段AD上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為直角的頂點(diǎn),向上作等腰直角三角形PBE,連接DE,若在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,DE的最小值為3,則AD的長(zhǎng)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com