【題目】某路段上有A,B兩處相距近200m且未設(shè)紅綠燈的斑馬線.為使交通高峰期該路段車輛與行人的通行更有序,交通部門打算在汽車平均停留時(shí)間較長的一處斑馬線上放置移動紅綠燈.圖1,圖2分別是交通高峰期來往車輛在AB斑馬線前停留時(shí)間的抽樣統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖解決下列問題:

(1)若某日交通高峰期共有350輛車經(jīng)過A斑馬線,請估計(jì)該日停留時(shí)間為10s12s的車輛數(shù),以及這些停留時(shí)間為10s12s的車輛的平均停留時(shí)間;(直接寫出答案)

(2)移動紅綠燈放置在哪一處斑馬線上較為合適?請說明理由.

【答案】17輛,;(2)選B. 理由見解析.

【解析】

1)求出停留時(shí)間為10s12s的車輛的百分比,計(jì)算即可;

2)求出車輛在A、B斑馬線前停留時(shí)間的平均數(shù),比較即可.

解:(17輛,停留時(shí)間為10s12s的車輛的平均停留時(shí)間為:

10+12÷2=.

2)車輛在A斑馬線前停留時(shí)間約為:,

車輛在B斑馬線前停留時(shí)間為:,

因此移動紅綠燈放置B處斑馬線上較為合適.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè))與y軸交于C點(diǎn) .

(1)求拋物線的解析式和A、B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動點(diǎn)(不與B、C重合),則是否存在一點(diǎn)P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)若M是拋物線上任意一點(diǎn),過點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求M點(diǎn)的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的布袋里裝有16個(gè)只有顏色不同的球,其中紅球有x個(gè),白球有2x個(gè),其他均為黃球,現(xiàn)甲從布袋中隨機(jī)摸出一個(gè)球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機(jī)摸出一個(gè)球,若為黃球,則乙同學(xué)獲勝。

(1)當(dāng)X=3時(shí),誰獲勝的可能性大?

(2)當(dāng)x為何值時(shí),游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將拋物線y=ax2(a<0)平移到頂點(diǎn)M恰好落在直線y=x+3上,且拋物線過直線與y軸的交點(diǎn)A,設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為m(m>0).

(1)用含m的代數(shù)式表示a;

(2)如圖2,RtCBT與拋物線交于C、DT三點(diǎn),∠B=90BCx軸,CD=2BD=t,BT=2t,△TDC的面積為4

①求拋物線方程;

②如圖3,P為拋物線AM段上任一點(diǎn),Q(0,4),連結(jié)QP并延長交線段AMN,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

若該拋物線經(jīng)過點(diǎn),試求的值及拋物線的頂點(diǎn)坐標(biāo).

求此拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點(diǎn)都在同一條直線上.

直線截拋物線所得的線段長是否為定值?若是,請求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解,并解決問題:

整體思想是中學(xué)數(shù)學(xué)中的一種重要思想,貫穿于中學(xué)數(shù)學(xué)的全過程,比如整體代入,整體換元,整體約減,整體求和,整體構(gòu)造,,有些問題若從局部求解,采取各個(gè)擊破的方式,很難解決,而從全局著眼,整體思考,會使問題化繁為簡,化難為易,復(fù)雜問題也能迎刃而解.

例:當(dāng)代數(shù)式的值為7時(shí),求代數(shù)式的值.

解:因?yàn)?/span>,所以

所以.

以上方法是典型的整體代入法.

請根據(jù)閱讀材料,解決下列問題:

1)已知,求的值.

2)我們知道方程的解是,現(xiàn)給出另一個(gè)方程,則它的解是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)A、B,把拋物線在x軸及其下方的部分記作C1,將C1向左平移得到C2,C2x軸交于點(diǎn)BD,若直線yx+mC1、C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:形如y|G|G為用自變量表示的代數(shù)式)的函數(shù)叫做絕對值函數(shù).

例如,函數(shù)y|x1|,yy|x2+2x+3|都是絕對值函數(shù).

絕對值函數(shù)本質(zhì)是分段函數(shù),例如,可以將y|x|寫成分段函數(shù)的形式:

探索并解決下列問題:

1)將函數(shù)y|x1|寫成分段函數(shù)的形式;

2)如圖1,函數(shù)y|x1|的圖象與x軸交于點(diǎn)A1,0),與函數(shù)y的圖象交于B,C兩點(diǎn),過點(diǎn)Bx軸的平行線分別交函數(shù)y,y|x1|的圖象于D,E兩點(diǎn).求證ABE∽△CDE;

3)已知函數(shù)y|x2+2x+3|的圖象與y軸交于F點(diǎn),與x軸交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),點(diǎn)P在函數(shù)y|x2+2x+3|的圖象上(點(diǎn)P與點(diǎn)F不重合),PHx軸,垂足為H.若PMHMOF相似,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案