【題目】如圖,在四邊形ABCD中,AC是四邊形的對角線,∠CAD=30°,過點CCEAB于點E,∠B=2BAC,∠ADC﹣∠BAC=90°,若AB=20,CD=16,則BE的長為____

【答案】2

【解析】

EA上截取EFEB,連接CF,作FMACM,作CNADN,由線段垂直平分線的性質(zhì)得出CBCF,由等腰三角形的性質(zhì)得出∠CFB=∠B2BAC,證出∠FCA=∠BAC,得出AFCF,由等腰三角形的性質(zhì)得出CMAMAC,由直角三角形的性質(zhì)得出CNAC,得出AMCN,證出∠BAC=∠DCN,證明△AFM≌△CDNASA),得出AFCD16,進而得出答案.

EA上截取EF=EB,連接CF,作FMACM,作CNADN,如圖所示:

CEAB

CB=CF,

∴∠CFB=B=2BAC

∵∠CFB=FCA+BAC

∴∠FCA=BAC,

AF=CF

FMAC

CM=AM=AC

CNAD,∠CAD=30,

CN=AC,

AM=CN

∵∠ADC﹣∠BAC=90

∴∠ADC=90+BAC

∵∠ADC=N+DCN=90+DCN,

∴∠BAC=DCN

在△AFM和△CDN中,

∴△AFM≌△CDNASA),

AF=CD=16,

BF=ABAF=2016=4,

BE=BF=2

故答案為:2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經(jīng)過點(-10),有下列結(jié)論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結(jié)論有( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AC的表達式為yx8,點P從點A開始沿AO向點O1個單位/s的速度移動,點Q從點O開始沿OC向點C2個單位/s的速度移動.如果P,Q兩點分別從點AO同時出發(fā),經(jīng)過幾秒能使PQO的面積為8個平方單位?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+ca≠0)的圖象經(jīng)過M1,0)和N3,0)兩點,且與y軸交于D03),直線l是拋物線的對稱軸.

1)求該拋物線的解析式.

2)若過點A﹣10)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.

3)點P在拋物線的對稱軸上,⊙P與直線ABx軸都相切,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數(shù)k取何值,直線r與拋物線C都只有一個交點;

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點,過點PPQy軸且與直線y=2交于點Q,O為原點,

求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(1,4)和點B(5,1)在平面直角坐標系中的位置如圖所示:

(1)點A1、B1分別為點A、B關(guān)于y軸的對稱點,請畫出四邊形AA1B1B,并寫出A1、B1的坐標;

(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個頂點的線段,將四邊形AA1B1B分成兩個圖形,并且使分得的圖形中的一個是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,AB、AC的垂直平分線的交點D恰好落在BC邊上

(1)判斷ABC的形狀

(2)若點A在線段DC的垂直平分線上,求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①②,銳角的正弦值和余弦值都隨著銳角的變化而變化.試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律.

(2)根據(jù)你探索到的規(guī)律,試比較18°,34°,50°,62°,88°這些銳角的正弦值的大小和余弦值的大小.

(3)比較大小(在橫線上填寫“<”“>”或“=”):

若α=45°,則sin α    cos α;

若α<45°,則sin α    cos α;

若α>45°,則sin α    cos α.

(4)利用互為余角的兩個角的正弦和余弦的關(guān)系,試比較下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,再添加下列條件中的某一個就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號正確答案是( )

A.①②B.①②③C.①②③④D.①②③④⑤.

查看答案和解析>>

同步練習冊答案