【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn), ,我們把叫做、兩點(diǎn)間的“轉(zhuǎn)角距離”,記作.
(1)令,O為坐標(biāo)原點(diǎn),則= ;
(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)滿足,請(qǐng)寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中,畫出所有符合條件的點(diǎn)P所組成的圖形;
(3)設(shè)是一個(gè)定點(diǎn), 是直線上的動(dòng)點(diǎn),我們把的最小值叫做到直線的“轉(zhuǎn)角距離”.若到直線的“轉(zhuǎn)角距離”為10,求a的值.
【答案】(1)7; (2), 畫圖見解析;
(3)a的值為4或﹣16.
【解析】試題分析:(1)根據(jù)新定義進(jìn)行求解即可得;
(2)根據(jù)新定義知|x|+|y|=1,據(jù)此可以畫出符合題意的圖形即可;
(3)設(shè)直線上一點(diǎn)Q(x,x+4),則d(P,Q)=|a﹣x|+|﹣2﹣x﹣4|=10,分情況進(jìn)行求解即可得.
試題解析:(1)=|3-0|+|-4-0|=3+4=7,
故答案為:7;
(2)由題意得: ,
畫圖如下:
(3)∵到直線的“轉(zhuǎn)角距離”為10,
∴設(shè)直線上一點(diǎn)Q(x,x+4),則d(P,Q)=10,
∴|a﹣x|+|﹣2﹣x﹣4|=10,即|a﹣x|+|x+6|=10,
當(dāng)a﹣x≥0,x≥﹣6時(shí),原式=a﹣x+x+6=10,解得a=4;
當(dāng)a﹣x<0,x<﹣6時(shí),原式=x﹣a﹣x﹣6=10,解得a=﹣16,
綜上討論,a的值為4或﹣16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,是真命題的是( )
A.相等的角是對(duì)頂角
B.同旁內(nèi)角互補(bǔ)
C.過一點(diǎn)不只有一條直線與已知直線垂直
D.對(duì)于直線 a、b、c,如果 b∥a,c∥a,那么 b∥c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分別是BC,DE的中點(diǎn).
(1)求證:MN⊥DE;
(2)若BC=20,DE=12,求△MDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x<0時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x≥0時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x﹣1,它的相關(guān)函數(shù)為.
(1)已知點(diǎn)A(﹣5,8)在一次函數(shù)y=ax﹣3的相關(guān)函數(shù)的圖象上,求a的值;
(2)已知二次函數(shù).
①當(dāng)點(diǎn)B(m, )在這個(gè)函數(shù)的相關(guān)函數(shù)的圖象上時(shí),求m的值;
②當(dāng)﹣3≤x≤3時(shí),求函數(shù)的相關(guān)函數(shù)的最大值和最小值;
(3)在平面直角坐標(biāo)系中,點(diǎn)M,N的坐標(biāo)分別為(﹣,1),(,1}),連結(jié)MN.直接寫出線段MN與二次函數(shù)的相關(guān)函數(shù)的圖象有兩個(gè)公共點(diǎn)時(shí)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的方格紙中,每個(gè)小方格都是邊長為1個(gè)單位的正方形,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.(每個(gè)小方格的頂點(diǎn)叫格點(diǎn))
(1)畫出△ABC向下平移3個(gè)單位后的△A1B1C1;
(2)畫出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2,并求點(diǎn)A旋轉(zhuǎn)到A2所經(jīng)過的路線長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com