【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:(1)4a+2b+c<0;(2)方程ax2+bx+c=0兩根都大于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】
由圖可知,x=2時函數(shù)值小于0,故(1)正確,函數(shù)與x軸的交點(diǎn)為x=1.x=3,都大于0,故(2)正確 ,由圖像知(3)錯誤,由圖象開口向上,a>0,與y軸交于正半軸,c>0,對稱軸x=﹣=1,故b<0,bc<0,即可判斷一次函數(shù)y=x+bc的圖象.
①由x=2時,y=4a+2b+c,由圖象知:y=4a+2b+c<0,故正確;
②方程ax2+bx+c=0兩根分別為1,3,都大于0,故正確;
③當(dāng)x<2時,由圖象知:y隨x的增大而減小,故錯誤;
④由圖象開口向上,a>0,與y軸交于正半軸,c>0,x=﹣=1>0,∴b<0,
∴bc<0,∴一次函數(shù)y=x+bc的圖象一定過第一、三、四象限,故正確;
故正確的共有3個,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)節(jié)能減排,發(fā)展低碳經(jīng)濟(jì),某市“用電大戶”用480萬元購得“變頻調(diào)速技術(shù)”后,進(jìn)一步投入資金1520萬元購買配套設(shè)備,以提高用電效率達(dá)到節(jié)約用電的目的.已知該“用電大戶”生產(chǎn)的產(chǎn)品“草甘磷”每件成本費(fèi)為40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價(jià),需定在100元到300元之間較為合理.當(dāng)銷售單價(jià)定為100元時,年銷售量為20萬件;當(dāng)銷售單價(jià)超過100元,但不超過200元時,每件新產(chǎn)品的銷售價(jià)格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價(jià)超過200元,但不超過300元時,每件產(chǎn)品的銷售價(jià)格在200元的基礎(chǔ)上每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-節(jié)電投資)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該“用電大戶”是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該“用電大戶”把“草甘磷”的銷售單價(jià)定在超過100元,但不超過200元的范圍內(nèi),并希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利為1842萬元,請你確定此時銷售單價(jià).在此情況下,要使產(chǎn)品銷售量最大,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計(jì)該市“綠色出行”方式的人數(shù).
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,D為△ABC外一點(diǎn),且AD=AC,則∠BDC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為經(jīng)過點(diǎn)(1,0)且垂直于x軸的直線.給出四個結(jié)論:①abc>0;②當(dāng)x>1時,y隨x的增大面減。③4a﹣2b+c>0;④3a+c>0.其中正確的結(jié)論是_____(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD為⊙O的直徑,BC為⊙O的切線,切點(diǎn)為M,分別過A,D兩點(diǎn)作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點(diǎn)E.
(1)求證:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線經(jīng)過點(diǎn)A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點(diǎn)坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com