【題目】已知拋物線的頂點為點

1)求證:不論為何實數(shù),該拋物線與軸總有兩個不同的交點;

2)若拋物線的對稱軸為直線,求的值和點坐標(biāo);

3)如圖,直線與(2)中的拋物線并于兩點,并與它的對稱軸交于點,直線交直線于點,交拋物線于點.求當(dāng)為何值時,以為頂點的四邊形為平行四邊形.

【答案】1)詳見解析;(2,點坐標(biāo)為;(3時,可使得為頂點的四邊形是平行四邊形.

【解析】

1)從的判別式出發(fā),判別式總大于等于3,而證得;

2)根據(jù)拋物線的對稱軸來求的值;然后利用配方法把拋物線解析式轉(zhuǎn)化為頂點式,由此可以寫出點的坐標(biāo);

3)根據(jù)平行四邊形的性質(zhì)得到:

需要分類討論:當(dāng)四邊形是平行四邊形,,通過解該方程可以求得的值;

當(dāng)四邊形是平行四邊形,,通過解該方程可以求得的值.

解:(1,

不論為何實數(shù),總有,

,

無論為何實數(shù),關(guān)于的一元二次方程總有兩個不相等的實數(shù)根,

無論為何實數(shù),拋物線軸總有兩個不同的交點.

2拋物線的對稱軸為直線,

,即,

此時,拋物線的解析式為,

頂點坐標(biāo)為;

3為頂點的四邊形是平行四邊形,

四邊形是平行四邊形(直線在拋物線的上方)或四邊形(直線在拋物線的下方),如圖所示,

由已知,

,

,

當(dāng)四邊形是平行四邊形,

,

整理得,,

解得(不合題意,舍去),

當(dāng)四邊形是平行四邊形,

,

整理得,

解得,,

綜上,時,可使得為頂點的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過點 A2,3 ,直線y ax , y 與反比例函數(shù) y x 0 分別交于點 BC兩點.

1)直接寫出 k 的值

2)由線段 OB,OC和函數(shù) y x 0 BC 之間的部分圍成的區(qū)域(不含邊界) W

當(dāng) A點與 B點重合時,直接寫出區(qū)域 W 內(nèi)的整點個數(shù) ;

若區(qū)域 W內(nèi)恰有 8個整點,結(jié)合函數(shù)圖象,直接寫出 a的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線交x軸于A,B兩點(AB右邊),A3,0),B10)交y軸于C點,C0,3),連接AC;

1)求拋物線的解析式;

2P為拋物線上的一點,作PECAE點,且CE=3PE,求P點坐標(biāo);

3)將原拋物線向上平移1個單位拋物線的對稱軸交x軸于H點,過H作直線MH,NH,當(dāng)MHNH時,求MN恒過的定點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風(fēng)箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點G與建筑物頂點D及風(fēng)箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,在CD上有點N滿足CN=CA,AN交圓O于點F,過點FAC的平行線交CD的延長線于點M,交AB的延長線于點E

1)求證:EM是圓O的切線;

2)若ACCD=58,AN=3,求圓O的直徑長度.

3)在(2)的條件下,直接寫出FN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尼泊爾發(fā)生了里氏81級地震,某中學(xué)組織了獻愛心捐款活動,該校教學(xué)興趣小組對本校學(xué)生獻愛心捐款額做了一次隨機抽樣調(diào)查,并繪制了不完整的頻數(shù)分布表和頻數(shù)分布直方圖.如圖所示:

1a等于多少?b等于多少?

2)補全頻數(shù)分布直方圖;若制成扇形統(tǒng)計圖,求捐款額在之間的扇形圓心角的度數(shù);

3)該校共有1600名學(xué)生,估計這次活動中愛心捐款額不低于20元的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展了主題為霧霾知多少的專題調(diào)查括動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A.非常了解B.比較了解、C.基本了解D.不太了解四個等級,將所得數(shù)據(jù)進行整理后,繪制成如下兩幅不完整的統(tǒng)計圖表,請你結(jié)合圖表中的信息解答下列問題

等級

A

B

C

D

頻數(shù)

40

120

36

n

頻率

0.2

m

0.18

0.02

1)表中m   n   ;

2)扇形統(tǒng)計圖中,A部分所對應(yīng)的扇形的圓心角是   °,所抽取學(xué)生對丁霧霾了解程度的眾數(shù)是   ;

3)若該校共有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中比較了解人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學(xué)生只能選擇其中一項,并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

補全條形統(tǒng)計圖;

若該校共有學(xué)生2400名,試估計該校喜愛看電視的學(xué)生人數(shù).

若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.

查看答案和解析>>

同步練習(xí)冊答案