【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,4),B(4,2),C(-1,0)三點.
(1)點A關(guān)于y軸的對稱點A′ 的坐標(biāo)為 ,點B關(guān)于x軸的對稱點B′ 的坐標(biāo)為 ,線段AC的垂直平分線與y軸的交點D的坐標(biāo)為 ;
(2)求(1)中的△A′ B′ D的面積.
【答案】(1)A′(1,4),B′(4,-2),D(0,2)(2)6
【解析】
(1)根據(jù)已知點A,點B,點C的坐標(biāo),后利用關(guān)于x,y軸對稱點的性質(zhì)得出對應(yīng)點位置即可.
(2)根據(jù)點A′,點B′,點D的坐標(biāo)求出△A′ B′ D所在矩形的面積,后利用△A′B′D所在矩形的面積減去周圍三角形面積進而得出答案.
(1)根據(jù)題意作圖
已知A(-1,4),B(4,2),C(-1,0)三點,點A點A′關(guān)于y軸的對稱,點B點B′關(guān)于x軸的對稱,點D為線段AC的垂直平分線與y軸的交點
可得A′(1,4),B′(4,-2),D(0,2)
(2)A′(1,4),B′(4,-2),D(0,2)
根據(jù)所作圖形可知:△A′ B′ D的面積=△A′B′D所在矩形的面積-周圍三角形面積,即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E。
(1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,請說明DE=AD-BE的理由;
(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE又具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不必說明理由)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,木工師傅在板材邊角處作直角時,往往使用“三弧法”,其作法是:
(1)作線段AB,分別以A,B為圓心,以AB長為半徑作弧,兩弧的交點為C;
(2)以C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;
(3)連接BD,BC.
下列說法不正確的是( )
A. ∠CBD=30° B. S△BDC=AB2
C. 點C是△ABD的外心 D. sin2A+cos2D=l
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊負責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.
(1)分別求每臺型, 型挖掘機一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°.
(1)求∠FEC的度數(shù);
(2)若∠BAC=3∠B,求證:AB⊥AC;
(3)當(dāng)∠DAB=______度時,∠BAC=∠AEC.(請直接填出結(jié)果,不用證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點O是線段AD上一動點(不與點A、D重合),分別以AO和DO為邊在AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連結(jié)AC、BD相交于點E,連結(jié)OE.
(1)當(dāng)點O為AD的中點時,求∠DEA的度數(shù);
(2)在(1)的條件下,△ADE是軸對稱圖形嗎?如果是,指出它的對稱軸;如果不是,說明理由;
(3)當(dāng)點O不在AD的中點時,求證EO平分∠DEA.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN=EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應(yīng)點為F.
(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;
(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;
(3)當(dāng)射線AF交線段CD于點G時,請直接寫出CG的最大值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2x2+3xy5x+1,B=x2+xy+2
(1)求A+2B.
(2)若A+2B的值與x的值無關(guān),求y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com