【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,4),B4,2),C(-1,0)三點.

1)點A關(guān)于y軸的對稱點A的坐標(biāo)為 ,點B關(guān)于x軸的對稱點B的坐標(biāo)為 ,線段AC的垂直平分線與y軸的交點D的坐標(biāo)為

2)求(1)中的△ABD的面積.

【答案】(1)A1,4),B4,-2),D0,2)(26

【解析】

1)根據(jù)已知點A,B,C的坐標(biāo),后利用關(guān)于xy軸對稱點的性質(zhì)得出對應(yīng)點位置即可.

2)根據(jù)點A,點B,點D的坐標(biāo)求出ABD所在矩形的面積,后利用A′B′D所在矩形的面積減去周圍三角形面積進而得出答案.

1)根據(jù)題意作圖

已知A(-1,4),B4,2),C(-1,0)三點,點AA關(guān)于y軸的對稱,點BB關(guān)于x軸的對稱,點D線段AC的垂直平分線與y軸的交點

可得A1,4),B4,-2),D02

2A1,4),B4,-2),D0,2

根據(jù)所作圖形可知:ABD的面積=A′B′D所在矩形的面積-周圍三角形面積,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且ADMND,BEMNE。

1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;

2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,請說明DE=ADBE的理由;

3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE又具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不必說明理由)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,木工師傅在板材邊角處作直角時,往往使用三弧法,其作法是:

(1)作線段AB,分別以A,B為圓心,以AB長為半徑作弧,兩弧的交點為C;

(2)以C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;

(3)連接BD,BC.

下列說法不正確的是(

A. CBD=30° B. SBDC=AB2

C. CABD的外心 D. sin2A+cos2D=l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實綠水青山就是金山銀山的發(fā)展理念,某市政部門招標(biāo)一工程隊負責(zé)在山腳下修建一座水庫的土方施工任務(wù)該工程隊有兩種型號的挖掘機,已知3型和5型挖掘機同時施工一小時挖土165立方米;4型和7型挖掘機同時施工一小時挖土225立方米每臺型挖掘機一小時的施工費用為300,每臺型挖掘機一小時的施工費用為180

(1)分別求每臺, 型挖掘機一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,EFAD,ADBC,CE平分BCF,DAC=3BCF,ACF=20°

1)求FEC的度數(shù);

2)若BAC=3B,求證:ABAC;

3)當(dāng)DAB=______度時,BAC=AEC.(請直接填出結(jié)果,不用證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是線段AD上一動點(不與點A、D重合),分別以AODO為邊在AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連結(jié)AC、BD相交于點E,連結(jié)OE.

1)當(dāng)點OAD的中點時,求DEA的度數(shù);

2)在(1)的條件下,△ADE是軸對稱圖形嗎?如果是,指出它的對稱軸;如果不是,說明理由;

3)當(dāng)點O不在AD的中點時,求證EO平分DEA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN=EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是____________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應(yīng)點為F.

(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;

(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;

(3)當(dāng)射線AF交線段CD于點G時,請直接寫出CG的最大值 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A2x2+3xy5x+1,Bx2+xy+2

1)求A+2B

2)若A+2B的值與x的值無關(guān),求y的值.

查看答案和解析>>

同步練習(xí)冊答案