【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A坐標(biāo)(2,3),過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,AH交反比例函數(shù)在第一象限的圖象于點(diǎn)B,且滿足=2.
(1)求該反比例函數(shù)的解析式;
(2)點(diǎn)C在x正半軸上,點(diǎn)D在該反比例函數(shù)的圖象上,且四邊形ABCD是平行四邊形,求點(diǎn)D坐標(biāo).
【答案】(1)y=;(2)點(diǎn)D坐標(biāo)(1,2)
【解析】
(1)先求出點(diǎn)B坐標(biāo),利用待定系數(shù)法可求反比例函數(shù)解析式;
(2)利用平行四邊形的性質(zhì)可得AB∥CD,AB=CD=2,可求點(diǎn)D坐標(biāo).
解:(1)∵點(diǎn)A坐標(biāo)(2,3),
∴AH=3,
∵=2,
∴BH=1,AB=2,
∴點(diǎn)B(2,1),
設(shè)反比例函數(shù)的解析式為y=(k≠0),
∵點(diǎn)B在反比例函數(shù)的圖象上,
∴k=2×1=2,
∴反比例函數(shù)的解析式為y=;
(2)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD=2,
∵AB⊥x軸,
∴CD⊥x軸,
∴點(diǎn)D縱坐標(biāo)2,
∴點(diǎn)D坐標(biāo)(1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是我國古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中OP為下水管道口直徑,OB為可繞轉(zhuǎn)軸O自由轉(zhuǎn)動(dòng)的閥門.平時(shí)閥門被管道中排出的水沖開,可排出城市污水;當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防河水倒灌入城中.若閥門的直徑OB=OP=100cm,OA為檢修時(shí)閥門開啟的位置,且OA=OB.
(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中∠POB的取值范圍;
(2)為了觀測水位,當(dāng)下水道的水沖開閥門到達(dá)OB位置時(shí),在點(diǎn)A處測得俯角∠CAB=67.5°,若此時(shí)點(diǎn)B恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留小數(shù)點(diǎn)后一位)
(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以每小時(shí)30海里的速度向北偏東75°方向航行,在點(diǎn) 處測得碼頭 的船的東北方向,航行40分鐘后到達(dá)處,這時(shí)碼頭恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭的最近距離.(結(jié)果精確的0.1海里,參考數(shù)據(jù) )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)B在⊙O上. AC經(jīng)過圓心0并與圓相交于點(diǎn)D,C,過C作直線CE丄AB,交AB的延長線于點(diǎn)E,且CB平分∠ACE.
(1)求證:AB是圓O的切線;
(2)若BE=3,CE=4,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AD、BD分別是的內(nèi)角∠BAC、∠ABC的平分線,過點(diǎn)A作AE⊥AD,交BD的延長線于點(diǎn)E.
(1)求證:;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;
(3)如果∠ABC是銳角,且與相似,求∠ABC的度數(shù),并直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com