【題目】“五一節(jié)”期間,小明一家自駕游去了離家240千米的某地,如圖是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.
(1)求出y(千米)與x(小時)之間的函數(shù)表達(dá)式;
(2)他們出發(fā)2小時時,離目的地還有多少千米?
【答案】
(1)解:當(dāng)0<x≤1時,設(shè)函數(shù)表達(dá)式為y=kx,
∵當(dāng)x=1時,y=60,
∴k=60,
∴y=60x;
當(dāng)1<x≤3時,設(shè)函數(shù)表達(dá)式為y=k′x+b,
∵圖象過點(1,60),(3,240),
∴ ,解得: ,
∴y=90x﹣30.
∴y(千米)與x(小時)之間的函數(shù)表達(dá)式為y=
(2)解:當(dāng)x=2時,y=90×2﹣30=150,
∴240﹣150=90.
答:他們出發(fā)2小時時,離目的地還有90千米
【解析】(1)分0<x≤1和1<x≤3兩段來考慮,根據(jù)圖象找出點的坐標(biāo),利用待定系數(shù)法即可求出函數(shù)解析式;(2)將x=2代入(1)得出的函數(shù)解析式中,得出y值,再用240﹣y即可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點E在直線BC上(不與點B,C重合),F(xiàn)M⊥AD,交射線AD于點M.
(1)當(dāng)點E在邊BC上,點M在邊AD的延長線上時,如圖①,求證:AB+BE=AM;
(提示:延長MF,交邊BC的延長線于點H.)
(2)當(dāng)點E在邊CB的延長線上,點M在邊AD上時,如圖②;當(dāng)點E在邊BC的延長線上,點M在邊AD上時,如圖③.請分別寫出線段AB,BE,AM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1),(2)的條件下,若BE=,∠AFM=15°,則AM=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD,BC相交于點O,OA=OD,OB=OC.下列結(jié)論正確的是( )
A. △AOB≌△DOC B. △ABO≌△DOC C. ∠A=∠C D. ∠B=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑“之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米
②兔子和烏龜同時從起點出發(fā)
③烏龜在途中休息了10分鐘
④兔子在途中750米處追上烏龜
其中說法正確的是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時路程與時間的函數(shù)圖象,問
(1)在剛出發(fā)時我公安快艇距走私船多少海里?
(2)計算走私船與公安快艇的速度分別是多少?
(3)寫出L1,L2的解析式
(4)問6分鐘時兩艇相距幾海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E為BC上的一點,BE=2,F(xiàn)為AB上的一點,AF=3,P為AC上一點,則PF+PE的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com