【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),CD⊥AB于點(diǎn)D.P為AB延長(zhǎng)線上一點(diǎn),∠PCD=2∠BAC.
(1)求證:CP為⊙O的切線;
(2)若BP=1,CP=,求 ⊙O的半徑;
【答案】(1)見(jiàn)解析;(2)⊙O的半徑為2.
【解析】試題分析:
(1)如圖,連接OC,先證∠DOC=2∠BAC,結(jié)合∠PCD=2∠BAC,可得∠PCD=∠DOC;由CD⊥AB于點(diǎn)D可得∠DOC+∠DCO=90°,由此可得∠PCD+∠DCO=∠PCO=90°,從而可得PC是⊙O的切線;
(2)設(shè)⊙O的半徑為則,OC=OB= ,OP=AB+AP= ,在Rt△OCP中,由勾股定理可得OC2+PC2=OP2,即,解此方程即可求得⊙O的半徑.
試題解析:
(1)如圖,連接OC,
∵OC=OA,
∴∠BAC=∠ACO,
∴∠POC=∠BAC+∠ACO=2∠BAC,
又∵∠PCD=2∠BAC,
∴∠POC=∠PCD,
∵CD⊥AB于點(diǎn)D,
∴∠ODC=90.
∴∠POC+∠OCD=90.
∴∠PCD+∠OCD=90.
∴∠OCP=90.
∴半徑OC⊥CP.
∴OP為⊙O的切線.
(2)設(shè)⊙O的半徑為r,則OC=OB= ,OP=AB+AP= ,
∵在Rt△OCP中,OC2+CP2=OP2,CP=
∴
解得: .
∴⊙O的半徑為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列結(jié)論:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正確結(jié)論的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,0),對(duì)稱軸為l.則下列結(jié)論:①abc>0; ②a-b+c=0; ③2a+c<0; ④a+b<0,其中所有正確的結(jié)論是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC 中,AD 是 BC 邊上的中線.
(1)畫出與△ACD 關(guān)于點(diǎn) D 成中心對(duì)稱的三角形;
(2)找出與 AC 相等的線段;
(3)探索:△ABC 中,AB+AC 與中線 AD 之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了編撰祖國(guó)的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩(shī)詞大會(huì)”,小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩(shī),其答案為“山重水復(fù)疑無(wú)路”.
(1)小明回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是 ;
(2)小麗回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選“重”還是選“窮”、第四個(gè)字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請(qǐng)用列表或畫樹(shù)狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=20°,點(diǎn)M、N分別是邊OA、OB上的定點(diǎn),點(diǎn)P、Q分別是邊OB、OA上的動(dòng)點(diǎn),記∠MPQ=,∠PQN=,當(dāng)MP+PQ+QN最小時(shí),則的值為( )
A. 10°B. 20°C. 40°D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀并解決問(wèn)題:有趣的勾股數(shù)組
定義:一般地,若三角形三邊長(zhǎng),,都是正整數(shù),且滿足,那么數(shù)組稱為勾股數(shù)組.
關(guān)于勾股數(shù)組的研究我國(guó)歷史上有過(guò)非常輝煌的成就,根據(jù)我國(guó)古代數(shù)學(xué)書《周髀算經(jīng)》記載,在約公元前1100年,人們就已經(jīng)知道“勾廣三,股修四,徑隅五”(古人把較短的直角邊稱為勾,較長(zhǎng)直角邊稱為股,而斜邊則成稱為弦),即知道了勾股數(shù)組,后來(lái)人們發(fā)現(xiàn)并證明了勾股定理.
公元263年魏朝劉徽注《九章算術(shù)》,文中除提到勾股數(shù)組以外,還提到,,,等勾股數(shù)組.
設(shè),是兩個(gè)正整數(shù),且,三角形三邊長(zhǎng),,都是正整數(shù).
下表中的,,可以組成一些有規(guī)律的勾股數(shù)組:
2 | 1 | 3 | 4 | 5 |
3 | 2 | 5 | 12 | 13 |
4 | 1 | 15 | 8 | 17 |
4 | 3 | 7 | 24 | 25 |
5 | 2 | 21 | 20 | 29 |
5 | 4 | 9 | 40 | 41 |
6 | 1 | 35 | 12 | 37 |
6 | 5 | 11 | 60 | 61 |
7 | 2 | 45 | 28 | 53 |
7 | 4 | 33 | 56 | 65 |
7 | 6 | 13 | 84 | 85 |
請(qǐng)你仔細(xì)觀察這個(gè)表格,解答下列問(wèn)題:
(1)表中和,的等量關(guān)系式是________;
(2)表中的勾股數(shù)組用只含,的代數(shù)式表示為________;
(3)小明通過(guò)研究表中數(shù)據(jù)發(fā)現(xiàn):若勾股數(shù)組中,弦與股的差為1,則勾股數(shù)的形式可表述為(,為正整數(shù)),請(qǐng)你用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ABD中,∠BAC=∠ABD=90°,點(diǎn)E為AD邊上的一點(diǎn),且AC=AE,連接CE交AB于點(diǎn)G,過(guò)點(diǎn)A作AF⊥AD交CE于點(diǎn)F.
(1)求證:△AGE≌△AFC;
(2)若AB=AC,求證:AD=AF+BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在對(duì)角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com