【題目】如圖,在正方形ABCD中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B,C重合),CN⊥DM,與AB交于點(diǎn)N,連接OM,ON,MN.下列四個(gè)結(jié)論:①△CNB≌△DMC;②OM=ON;③△OMN∽△OAD;④AN2+CM2=MN2,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
據(jù)正方形的性質(zhì),依次判定△CNB≌△DMC,△OCM≌△OBN,根據(jù)全等三角形的性質(zhì)以及勾股定理進(jìn)行計(jì)算即可得出結(jié)論.
∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正確;
∵△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON故②正確,
∵△OCM≌△OBN,
∴∠COM=∠BON,
∴∠MON=∠COB=90°,
∴△MON是等腰直角三角形,
∵△AOD也是等腰直角三角形,
∴△OMN∽△OAD,故③正確,
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,
故④正確;
∴本題正確的結(jié)論有:①②③④,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
()求點(diǎn)的坐標(biāo).
()如圖, 為軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過作軸于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)畫出△ABC和△A1B1C1關(guān)于原點(diǎn)O對(duì)稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點(diǎn)的坐標(biāo);
(2)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次調(diào)查的市民人數(shù)為_____人,m=______,n=_______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有市民1200000人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”程度的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的頂點(diǎn)A、B分別在邊OM、ON上,當(dāng)點(diǎn)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),△ABC的形狀始終保持不變,在運(yùn)動(dòng)的過程中,點(diǎn)C到點(diǎn)O的距離為整數(shù)的點(diǎn)有( 。﹤(gè).
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,連接AC,∠DAC=∠BAC.
(1)求證:AD=DC;
(2)若∠D=120°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于( )
A. 18 B. 22 C. 24 D. 46
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠CAB=90°,在斜邊CB上取點(diǎn)M,N(不包含C、B兩點(diǎn)),且tanB=tanC=tan∠MAN=1,設(shè)MN=x,BM=n,CN=m,則以下結(jié)論能成立的是( 。
A. m=n B. x=m+n C. x>m+n D. x2=m2+n2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com