已知拋物線y=-x2mxm+2.

(1)若拋物線與x軸的兩個交點A、B分別在原點的兩側(cè),并且AB,試求m的值;

(2)設(shè)C為拋物線與y軸的交點,若拋物線上存在關(guān)于原點對稱的兩點MN,并且△MNC的面積等于27,試求m的值.

答案:
解析:

  (1)(x1,0),B(x2,0).則x1,x2是方程x2mxm-2=0的兩根.

  ∵x1x2m,x1·x2m-2<0即m<2;

  又AB=∣x1x2∣=,

  ∴m2-4m+3=0.

  解得:m=1或m=3(舍去),∴m的值為1.

  (2)M(a,b),則N(-a,-b).

  ∵M、N是拋物線上的兩點,

  ∴

 、伲诘茫海2a2-2m+4=0.∴a2=-m+2.

  ∴當(dāng)m<2時,才存在滿足條件中的兩點M、N

  ∴

  這時M、Ny軸的距離均為

  又點C坐標(biāo)為(0,2-m),而SMNC=27,

  ∴2××(2-m=27.

  ∴解得m=-7.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.

1.求b+c的值

2.若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆廣東省深圳市華富中學(xué)初三上學(xué)期期中數(shù)學(xué)卷 題型:解答題

已知拋物線y=-x2mxm+2.  
(Ⅰ)若拋物線與x軸的兩個交點A、B分別在原點的兩側(cè),并且AB,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點,若拋物線上存在關(guān)于原點對稱的兩點M、N,并且 △MNC的面積等于27,試求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年度濰坊市高密七年級第二學(xué)期期末考試數(shù)學(xué) 題型:解答題

(11·兵團維吾爾)(8分)已知拋物線y=-x2+4x-3與x軸交于A、B兩點(A
點在B點左側(cè)),頂點為P.
(1)求A、B、P三點的坐標(biāo);
(2)在直角坐標(biāo)系中,用列表描點法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時,函
數(shù)值大于零;
(3)將此拋物線的圖象向下平移一個單位,請寫出平稱后圖象的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建尤溪初中畢業(yè)學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.

1.求b+c的值

2.若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;

3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州市區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

(本題滿分5分)已知拋物線y=-x2bx+c,它與x軸的兩個交點分別為(-1,0),(3,0),求此拋物線的解析式.

 

查看答案和解析>>

同步練習(xí)冊答案