【題目】某公司擬用運(yùn)營指數(shù)y來量化考核司機(jī)的工作業(yè)績,運(yùn)營指數(shù)(y)與運(yùn)輸次數(shù)(n)和平均速度(x)之間滿足關(guān)系式為y=ax2+bnx+100,當(dāng)n=1,x=30時(shí),y=190;當(dāng)n=2,x=40時(shí),y=420
用含x和n的式子表示y;
當(dāng)運(yùn)輸次數(shù)定為3次,求獲得最大運(yùn)營指數(shù)時(shí)的平均速度;
若n=2,x=40,能否在n增加m%(m>0),同時(shí)x減少m%的情況下,而y的值保持不變,若能,求出m的值;若不能,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-,
)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班甲、乙兩名同學(xué)在5次引體向上測試中的有效次數(shù)如下:
甲:8,8,7,8,9.乙:5,9,7,10,9.
甲、乙兩同學(xué)引體向上的平均數(shù)、眾數(shù)、中位數(shù)、方差如下:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
根據(jù)以上信息,回答下列問題:
(1)表格中_______,
_______,
_______.(填數(shù)值)
(2)體育老師根據(jù)這5次的成績,決定選擇甲同學(xué)代表班級參加年級引體向上比賽,選擇甲的理由是_______________________________________.班主任李老師根據(jù)去年比賽的成績(至少9次才能獲獎),決定選擇乙同學(xué)代表班級參加年級引體向上比賽,選擇乙的理由是_______________________________________.
(3)乙同學(xué)再做一次引體向上,次數(shù)為n,若乙同學(xué)6次引體向上成績的中位數(shù)不變,請寫出n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC是對角線,∠ABC=∠CDA=90°,BC=CD,延長BC交AD的延長線于點(diǎn)E.
(1)求證:AB=AD;
(2)若AE=BE+DE,求∠BAC的值;
(3)過點(diǎn)E作ME∥AB,交AC的延長線于點(diǎn)M,過點(diǎn)M作MP⊥DC,交DC的延長線于點(diǎn)P,連接PB.設(shè)PB=a,點(diǎn)O是直線AE上的動點(diǎn),當(dāng)MO+PO的值最小時(shí),點(diǎn)O與點(diǎn)E是否可能重合?若可能,請說明理由并求此時(shí)MO+PO的值(用含a的式子表示);若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項(xiàng)目”對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
根據(jù)以上信息解決下列問題:
(1) ,
;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取
名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的
名學(xué)生中恰好有
名男生、
名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,-m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請直接寫出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會實(shí)踐活動時(shí),想利用所學(xué)的解直角三角形的知識測量教學(xué)樓的高度,他們先在點(diǎn)D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測得樓頂M的仰角為45°,已知測角儀的高AD為1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線的圖象經(jīng)過點(diǎn)
,
,其對稱軸為直線
,過點(diǎn)
作
軸交拋物線于點(diǎn)
,
的平分線交線段
于點(diǎn)
,點(diǎn)
是拋物線上的一個(gè)動點(diǎn),設(shè)其橫坐標(biāo)為
.
(1)求拋物線的解析式;
(2)若動點(diǎn)在
、
間的拋物線上,連結(jié)
,
,求四邊形
面積
與
之間的函數(shù)關(guān)系式;
(3)如圖2,是拋物線的對稱軸上的一點(diǎn),在對稱軸左側(cè)的拋物線上是否存在點(diǎn)
使
成為以點(diǎn)
為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使點(diǎn)A與CD邊上的點(diǎn)H重合(H不與C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD周長為m,△CHG周長為n,則的值為( �。�
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)在條直線上,點(diǎn)
在
軸上,若正方形
按如圖所示的位置放置,且
的面積是1,直線
與
軸的夾角是45°,則點(diǎn)
的坐標(biāo)是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com