【題目】如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標(biāo)系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點(diǎn)B的對(duì)稱點(diǎn)是點(diǎn)E,求過(guò)點(diǎn)E的反比例函數(shù)解析式,并寫出第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過(guò)的所有格點(diǎn)的坐標(biāo).
【答案】解:∵點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)是點(diǎn)E,B(﹣2,3), ∴點(diǎn)E坐標(biāo)為(﹣2,﹣3),
設(shè)過(guò)點(diǎn)E的反比例函數(shù)解析式為y= ,
∴k=6,
∴過(guò)點(diǎn)E的反比例函數(shù)解析式為y= ,
∴第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過(guò)的所有格點(diǎn)的坐標(biāo)為(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1)
【解析】根據(jù)關(guān)于x軸對(duì)稱點(diǎn)的規(guī)律,可得出點(diǎn)E的坐標(biāo),再寫出反比例函數(shù)的解析式,再寫出答案即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考前各校初三學(xué)生都要進(jìn)行體育測(cè)試,某次中考體育測(cè)試設(shè)有A、B兩處考點(diǎn),甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處進(jìn)行中考體育測(cè)試,請(qǐng)用表格或樹(shù)狀圖分析:
(1)求甲、乙、丙三名學(xué)生在同一處進(jìn)行體育測(cè)試的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處進(jìn)行體育測(cè)試的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(﹣2,0).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上有一點(diǎn)P,滿足S△AOP=1,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車經(jīng)過(guò)這個(gè)十字路口.
(1)請(qǐng)用“樹(shù)形圖”或“列表法”列舉出這兩輛汽車行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車都向左轉(zhuǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)P在直線y=x上運(yùn)動(dòng),當(dāng)以點(diǎn)P為圓心,PA的長(zhǎng)為半徑的圓的面積最小時(shí),點(diǎn)P的坐標(biāo)為( )
A.(1,﹣1)
B.(0,0)
C.(1,1)
D.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線經(jīng)過(guò)P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求拋物線解析式;
(3)在直線y=nx+m中,當(dāng)n=0,m≠0時(shí),y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點(diǎn)C、D,當(dāng)該直線與⊙M相切時(shí),求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別是BC、CD的中點(diǎn),DE交AF于點(diǎn)M,點(diǎn)N為DE的中點(diǎn).
(1)若AB=4,求△DNF的周長(zhǎng)及sin∠DAF的值;
(2)求證:2ADNF=DEDM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB的解析式為y=2x+4,交x軸于點(diǎn)A,交y軸于點(diǎn)B,以A為頂點(diǎn)的拋物線交直線AB于點(diǎn)D,交y軸負(fù)半軸于點(diǎn)C(0,﹣4).
(1)求拋物線的解析式;
(2)將拋物線頂點(diǎn)沿著直線AB平移,此時(shí)頂點(diǎn)記為E,與y軸的交點(diǎn)記為F,
①求當(dāng)△BEF與△BAO相似時(shí),E點(diǎn)坐標(biāo);
②記平移后拋物線與AB另一個(gè)交點(diǎn)為G,則S△EFG與S△ACD是否存在8倍的關(guān)系?若有請(qǐng)直接寫出F點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com