【題目】如圖,已知,,,點E在線段AB上,,點F在直線AD上,

,求的度數(shù);

找出圖中與相等的角,并說明理由;

的條件下,點不與點BH重合從點B出發(fā),沿射線BG的方向移動,其他條件不變,請直接寫出的度數(shù)不必說明理由

【答案】(1)145°(2)與相等的角有:,335°145°

【解析】

根據(jù),可得,再根據(jù),即可得到;

根據(jù)同角的余角相等以及平行線的性質,即可得到與相等的角;

分兩種情況討論:當點C在線段BH上;點CBH延長線上,根據(jù)平行線的性質,即可得到的度數(shù)為

,,

,

,

,

相等的角有:,,

理由:

兩直線平行,內(nèi)錯角相等,

,

,

,

同角的余角相等,

,

兩直線平行,同位角相等,

當點C在線段BH上時,點F在點A的左側,

如圖1

,

兩直線平行,內(nèi)錯角相等,

當點C在射線HG上時,點F在點A的右側,

如圖2

,

兩直線平行,同旁內(nèi)角互補,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】14分)如圖,已知拋物線)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;

(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠為了解工人在單位時間內(nèi)加工同一種零件的技能水平,隨機抽取了50名工人加工的零件進行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是18這8個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖,請解答下列問題:

1根據(jù)統(tǒng)計圖,求這50名工人加工出的合格品數(shù)的中位數(shù);

2寫出這50名工人加工出的合格品數(shù)的眾數(shù)的可能取值;

3廠方認定,工人在單位時間內(nèi)加工出的合格品數(shù)不低于3件為技能合格,否則,將接受技能再培訓已知該廠有同類工人400名,請估計該廠將接受技能再培訓的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)時代,發(fā)達的物流業(yè)改變了我們的生活.某快遞公司的分發(fā)中心、菜鳥驛站、快遞員公寓依次分布在同一條直線上,快遞員甲、乙分別同時從菜鳥驛站和分發(fā)中心出發(fā),甲先騎自行車回到分發(fā)中心,將自行車歸還分發(fā)中心后步行經(jīng)過菜鳥驛站返回公寓(歸還自行車的時間忽略不計),乙先從分發(fā)中心步行到菜鳥驛站,步行速度與甲的步行速度相同,到達菜鳥驛站后停下來繼續(xù)完成剩余工作,隨后跑步回公寓,最后兩人同時到達公寓.甲、乙兩人與公寓的距離y()與出發(fā)的時間x(分鐘)之間的關系如圖所示.

(1)甲騎自行車的速度為 /分,乙跑步的速度為 /;

(2)乙在菜鳥驛站停留的時間為 分鐘;

(3)甲乙第二次相遇后再經(jīng)過多少分鐘他們相距450米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形

1)如圖,點延長線上,,求證:點中點.

2)如圖,點中點,延長線上一點,且,求證:

3)在(2)的條件下,若的延長線與交于點,試判斷四邊形是否為平行四邊形?并證明你的結論(先補全圖形再解答).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,∠175°,∠2105°,∠C=∠D.判斷 A F的大小關系,并說明理由.

2)對于某些數(shù)學問題,靈活運用整體思想,可以化難為易.在解二元一次方程組時,就可以運用整體代入法:如解方程組:.

解:把②代入①得,解得代入②得,

所以方程組的解為

請用同樣的方法解方程組:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OFMON的平分線,點A在射線OM上,PQ是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,,點EAD上,且,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A'處,則____________cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BCE,連接DE

1)說明點DABE的外接圓上;

2)若∠AED=CED,試判斷直線CDABE外接圓的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案