如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點(diǎn)D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=3cm,則BE= cm;
(3)BE與AD有何位置關(guān)系?請說明理由.
(1)根據(jù)等腰直角三角形的性質(zhì)可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可證得∠ACD=∠BCE,再結(jié)合AC=BC,即可證得結(jié)論;(2)6;(3)垂直
【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)可得CD=CE,由∠ACB=90°可得∠ACB=∠DCE,即可證得∠ACD=∠BCE,再結(jié)合AC=BC,即可證得結(jié)論;
(2)先由勾股定理求得AB=3,再由DB=AB,可得AD的長,然后根據(jù)全等三角形的性質(zhì)求解即可;
(3)根據(jù)全等三角形的性質(zhì)及三角形的面積公式求解即可
解:(1)∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∵AC=BC
∴△ACD≌△BCE;
(2)∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3,
又∵DB=AB,
∴AD=2AB=6,
∵△ACD≌△BCE;
∴BE=AD=6cm;
(3)如圖所示:
∵△ACD≌△BCE
∴∠ADC=∠BEC
∵∠1=∠2,∠DCE=90°
∴∠DBE=∠DCE=90°
∴BE⊥AD.
考點(diǎn):全等三角形的判定和性質(zhì)
點(diǎn)評:全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點(diǎn),一般難度不大,需熟練掌握.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com