【題目】如圖,矩形ABCD的頂點(diǎn)A,Bx軸上,且關(guān)于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若SBEF=7,k1+3k2=0,則k1等于_____

【答案】9

【解析】設(shè)出點(diǎn)A坐標(biāo),根據(jù)函數(shù)關(guān)系式分別表示各點(diǎn)坐標(biāo),根據(jù)割補(bǔ)法表示BEF的面積,構(gòu)造方程.

設(shè)點(diǎn)B的坐標(biāo)為(a,0),則A點(diǎn)坐標(biāo)為(﹣a,0),

由圖象可知,點(diǎn)C(a,),E(﹣a,﹣),D(﹣a,),

k1+3k2=0,k2=﹣k1,F(﹣,),

矩形ABCD面積為:2a=2k1

SDEF=,

SBCF=

SABE=,

SBEF=7,

2k1++k2=7,

又∵k2=﹣k1

k1+×(﹣)=7,

k1=9

故答案為:9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,DEAB,垂足為點(diǎn)E,連接CE.若AE2,∠DCE30°,則菱形的邊長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若,則稱是關(guān)于1的平衡數(shù).

13______是關(guān)于1的平衡數(shù);______是關(guān)于1的平衡數(shù)(用含的代數(shù)式表示).

2)若,判斷是否是關(guān)于1的平衡數(shù),并說明理由.

3)若與-1是關(guān)于1的平衡數(shù),與-2是關(guān)于1的平衡數(shù),求與關(guān)于1的平衡數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EGEF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,邊長為10cm,點(diǎn)E在AB邊上,BE=6cm.如果點(diǎn)P在線段BC上以4cm/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以acm/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,

(1)CP的長為 cm(用含t的代數(shù)式表示);

(2)若以E、B、P為頂點(diǎn)的三角形和以P、C、Q為頂點(diǎn)的三角形全等,求a的值.

(3)若點(diǎn)Q以(2)中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD四邊運(yùn)動(dòng).則點(diǎn)P與點(diǎn)Q會不會相遇?若不相遇,請說明理由.若相遇,求出經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在正方形ABCD的何處相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的對角線相交于點(diǎn),點(diǎn)為邊的中點(diǎn).若菱形的周長為16,,則的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)對于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P的坐標(biāo)為(a,kab)(k為常數(shù),k≠0),則稱點(diǎn)P′為點(diǎn)P的“k屬派生點(diǎn)”.例如:P(1,4)的“2屬派生點(diǎn)”為P′(1+,2×1+4),即P′(3,6).

(1) ① 點(diǎn)P(-1,-2)的“2屬派生點(diǎn)”P′的坐標(biāo)為_______________

② 若點(diǎn)P的“k屬派生點(diǎn)”為P′(3,3),請寫出一個(gè)符合條件的點(diǎn)P的坐標(biāo)_____________

(2) 若點(diǎn)Px軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為P′點(diǎn),且△OPP′為等腰直角三角形,則k的值為____________

(3) 如圖,點(diǎn)Q的坐標(biāo)為(0, ),點(diǎn)A在函數(shù)x<0)的圖象上,且點(diǎn)A是點(diǎn)B的“屬派生點(diǎn)”.當(dāng)線段BQ最短時(shí),求B點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:、分別是點(diǎn)、在數(shù)軸上對應(yīng)的數(shù).

1)求點(diǎn)與點(diǎn)的距離;

2)若甲、乙兩個(gè)動(dòng)點(diǎn)分別從兩點(diǎn)同時(shí)出發(fā),沿?cái)?shù)軸正方向運(yùn)動(dòng),它們的速度分別是21(單位長度/秒),求甲追上乙時(shí)所用的時(shí)間;

3)在(2)的條件下,甲動(dòng)點(diǎn)向數(shù)軸正方向運(yùn)動(dòng),乙動(dòng)點(diǎn)向數(shù)軸負(fù)方向運(yùn)動(dòng).當(dāng)甲動(dòng)點(diǎn)開始運(yùn)動(dòng)時(shí),丙動(dòng)點(diǎn)以4個(gè)單位長度/秒的速度和甲動(dòng)點(diǎn)同時(shí)從點(diǎn)向數(shù)軸正方向運(yùn)動(dòng),當(dāng)丙動(dòng)點(diǎn)遇到乙動(dòng)點(diǎn)時(shí)立即返回向數(shù)軸負(fù)方向運(yùn)動(dòng),當(dāng)遇到甲動(dòng)點(diǎn)時(shí)也馬上返回,如此往復(fù)直到甲乙兩動(dòng)點(diǎn)相遇則停止運(yùn)動(dòng),設(shè)甲乙兩動(dòng)點(diǎn)在點(diǎn)處相遇,求從開始到停止運(yùn)動(dòng),丙動(dòng)點(diǎn)走的總路程以及點(diǎn)對應(yīng)的數(shù)字.

查看答案和解析>>

同步練習(xí)冊答案