【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(m≠0)的圖象在第一象限交于點C,CD垂直于x軸,垂足為D,若OA=OB=OD=1.
(1)求點A、B、D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)在x>0的條件下,根據(jù)圖象說出反比例函數(shù)的值大于一次函數(shù)值的x的取值范圍.
【答案】(1)A(﹣1,0),B(0,1),D(1,0);
(2)反比例函數(shù)的解析式為y=.
(3)由圖像可知x的取值范圍是0<x<1
【解析】試題分析:(1)根據(jù)OA=OB=OD=1和各坐標軸上的點的特點易得到所求點的坐標;(2)將A、B兩點坐標分別代入y=kx+b,可用待定系數(shù)法確定一次函數(shù)的解析式,由C點在一次函數(shù)的圖象上可確定C點坐標,將C點坐標代入y= 可確定反比例函數(shù)的解析式;(3)觀察圖象即可得結(jié)論.
試題解析:
(1)∵OA=OB=OD=1,
∴點A、B、D的坐標分別為A(﹣1,0),B(0,1),D(1,0);
(2)∵點A、B在一次函數(shù)y=kx+b(k≠0)的圖象上,
∴,
解得,
∴一次函數(shù)的解析式為y=x+1.
∵點C在一次函數(shù)y=x+1的圖象上,且CD⊥x軸,
∴點C的坐標為(1,2),
又∵點C在反比例函數(shù)y=(m≠0)的圖象上,
∴m=2;
∴反比例函數(shù)的解析式為y=.
(3)由圖像可知x的取值范圍是0<x<1
科目:初中數(shù)學 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( )
①a=,b=,c= ②a=6,∠A=45°; ③∠A=32°,∠B=58°;
④a=7,b=24,c=25 ⑤a=2,b=2,c=4.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+x+4交x軸于點A、B,交y軸于點C,連接AC、BC.
(1)求交點A、B的坐標以及直線BC的解析式;
(2)如圖1,動點P從點B出發(fā)以每秒5個單位的速度向點O運動,過點P作y軸的平行線交線段BC于點M,交拋物線于點N,過點N作NC⊥BC交BC于點K,當△MNK與△MPB的面積比為1:2時,求動點P的運動時間t的值;
(3)如圖2,動點P 從點B出發(fā)以每秒5個單位的速度向點A運動,同時另一個動點Q從點A出發(fā)沿AC以相同速度向終點C運動,且P、Q同時停止,分別以PQ、BP為邊在x軸上方作正方形PQEF和正方形BPGH(正方形頂點按順時針順序),當正方形PQEF和正方形BPGH重疊部分是一個軸對稱圖形時,請求出此時軸對稱圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y1=kx+b(k≠0)與反比例函數(shù)y2=(m≠0)相交于A和B兩點,且A點坐標為(1,3),B點的橫坐標為﹣3.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使得y1>y2時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(2,-4)在正比例函數(shù)y=kx的圖象上。
(1)求k的值;
(2)若點(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;
(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件.
設銷售單價定為x元.據(jù)此規(guī)律,請回答:
(1)商店日銷售量減少___________件,每件商品盈利___________元(用含x的代數(shù)式表示);
(2)針對這種小商品的銷售情況,該商店要保證每天盈利640元,同時又要使顧客得到實惠,那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市政府建設一項水利工程,某運輸公司承擔運送總量為106m3的土石方任務,該公司有甲、乙兩種型號的卡車共100輛,甲型車平均每天可以運送土石方80m3,乙型車平均每天可以運送土石方120m3,計劃100天完成運輸任務.
(1)該公司甲、乙兩種型號的卡車各有多少臺?
(2)如果該公司用原有的100輛卡車工作了40天后,由于工程進度的需要,剩下的所有運輸任務必須在50天內(nèi)完成,在甲型卡車數(shù)量不變情況下,公司至少應增加多少輛乙型卡車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家商店將某種服裝按成本價提高40%后標價,又以8折優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是( )
A.120元
B.125元
C.135元
D.140元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com