【題目】如圖,平面直角坐標(biāo)系中,直線AB交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B(3,0).直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線AB的解析式;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
【答案】(1)y=x+1;(2);(3)點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).
【解析】
(1)把的坐標(biāo)代入直線的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐標(biāo);
(2)利用即可求出結(jié)果;
(3)分三種情況討論,當(dāng)、、分別為等腰直角三角形的直角頂點(diǎn)時(shí),求出點(diǎn)的坐標(biāo)分別為、、。
(1)設(shè)直線AB的解析式是y=kx+b
把A(0,1),B(3,0)代入得:
解得:
∴直線AB的解析式是:
(2)過點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,
∵x=1時(shí),=,P在點(diǎn)D的上方,
∴PD=n﹣,
由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BD的邊PD上的高長為2,
∴,
∴;
(3)當(dāng)S△ABP=2時(shí),,解得n=2,∴點(diǎn)P(1,2).
∵E(1,0), ∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1種情況,如圖1,∠CPB=90°,BP=PC,
過點(diǎn)C作CN⊥直線x=1于點(diǎn)N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4, ∴C(3,4).
第2種情況,如圖2, ∠PBC=90°,BP=BC,
過點(diǎn)C作CF⊥x軸于點(diǎn)F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5, ∴C(5,2).
3種情況,如圖3,∠PCB=90°,
∴∠CPB=∠EBP=45°,
∴△PCB≌△ BEP,
∴PC=CB=PE=EB=2,∴C(3,2).
∴以PB為邊在第一象限作等腰直角三角形BPC,
綜上所述點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字1,2,3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,求抽到數(shù)字“2”的概率;
(2)隨機(jī)抽取一張卡片,然后不放回,再隨機(jī)抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“1”且第二次抽到數(shù)字“2”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)指出數(shù)軸上 A、B、C、D、E 各點(diǎn)分別表示什么數(shù);
(2)按從小到大順序排列,將它們用“<”號(hào)連接起來;
(3)寫出離 C 點(diǎn) 3 個(gè)單位的點(diǎn)表示的數(shù);
(4)寫出離 C 點(diǎn) m 個(gè)單位的點(diǎn)表示的數(shù)(m>0).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,A,B分別是l1,l2上的點(diǎn),l3和l1,l2分別交于點(diǎn)C,D,P是線段CD上的動(dòng)點(diǎn)(點(diǎn)P不與C,D重合).
(1)若∠1=150°,∠2=45°,求∠3的度數(shù);
(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳計(jì)劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號(hào)的餐桌報(bào)價(jià)都為每張200元,餐椅報(bào)價(jià)都為每把50元.甲商場規(guī)定:每購買一張餐桌贈(zèng)送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報(bào)價(jià)的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com