【題目】如圖,根據(jù)圖中信息解答下列問題:
(1)關(guān)于x的不等式ax+b>0的解集是 ;
(2)關(guān)于x的不等式mx+n<1的解集是 ;
(3)當(dāng)x滿足 的條件時(shí),y1y2;
(4)當(dāng)x滿足 的條件時(shí),0<y2<y1.
【答案】(1);(2);(3);(4).
【解析】
(1)求ax+b>0的解集,只需確定直線y2在x軸上方時(shí)x的取值范圍即可;
(2)求mx+n<1的解集,也就是求直線y1在y=1下方時(shí)x的取值范圍,據(jù)此解答即可;
(3)找出直線y1在直線y2的下方與相交時(shí)x的取值范圍,據(jù)此可確定y1≤y2時(shí)x的取值范圍;
(4)根據(jù)函數(shù)圖象,找出直線y2在直線y1的下方且在x軸上方時(shí)x的取值范圍即可.
(1)∵直線y2=ax+b與x軸的交點(diǎn)是(4,0),
∴當(dāng)x<4時(shí), y2>0,即不等式ax+b>0的解集是x<4;
(2)∵直線y1=mx+n與y軸的交點(diǎn)是(0,1),
∴當(dāng)x<0時(shí), y1<1,即不等式mx+n<1的解集是x<0;
(3)由一次函數(shù)的圖象知,兩條直線的交點(diǎn)坐標(biāo)是(2,1.8),當(dāng)函數(shù)y1的圖象在y2的下面時(shí),有x2,
∴當(dāng)x≤2時(shí), y1≤y2;
(4)如圖所示,當(dāng)2<x<4時(shí),0< y2< y1.
故答案為:(1);(2);(3);(4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠BAC=90°,點(diǎn)D,E分別為邊AB,BC的中點(diǎn),點(diǎn)F在CA延長線上,且∠FDA=∠B.
(1)求證:AF=DE;
(2)若AC=3,BC=5,求四邊形AEDF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是平行四邊形ABCD的邊CD的中點(diǎn),延長AE交BC的延長線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若AB=8,BC=5,則EF的長為 時(shí),AB⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長AB與DE的延長線交于點(diǎn)F,連接AC、CF. 下列結(jié)論:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△BEF=S△ABE.其中正確的有( )
A.1個(gè)B.2個(gè)
C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的頂點(diǎn)A,B分別在y軸和x軸上,邊CD交x軸的正半軸于點(diǎn)E.
(1)若A(0,a),且,求A點(diǎn)的坐標(biāo);
(2)在(l)的條件下,若3AO=4EO,求D點(diǎn)的坐標(biāo);
(3)如圖2,連結(jié)AC交x軸于點(diǎn)F,點(diǎn)H是A點(diǎn)上方y軸上一動(dòng)點(diǎn),以AF、AH為邊作平行四邊形AFGH,使G點(diǎn)恰好落在AD邊上,試探討BF,HG與DG的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探究一次函數(shù)的圖像性質(zhì)時(shí)我們有如下發(fā)現(xiàn):
①系數(shù)決定了函數(shù)圖像的坡度,越大則圖像坡度越大(越靠近軸),越小則圖像坡度越小(越靠近軸);
②常數(shù)項(xiàng)決定了圖像與軸的交點(diǎn),即函數(shù)圖像與軸交點(diǎn)坐標(biāo)始終為.
基于以上發(fā)現(xiàn),我們得出結(jié)論:如果兩個(gè)一次函數(shù)的值相同,那么兩個(gè)一次函數(shù)的圖像平行.反之,如果兩直線平行,則兩條直線所對應(yīng)的函數(shù)表達(dá)式的值一定相等:把函數(shù)圖像沿軸向上(或向下) 平移個(gè)單位, 系數(shù)保持不變, 常數(shù)變?yōu)?/span> (或).如:函數(shù)和的圖像互相平行:函數(shù)的圖像向上平移2個(gè)單位后所得函數(shù)表達(dá)式為.
據(jù)此回答下列問題:
(1) 把函數(shù)的圖像向上平移4個(gè)單位后所得函數(shù)的表達(dá)式為____;
(2)把函數(shù)的圖像向 (上或下)平移 個(gè)單位可得到函數(shù)的圖像;
(3)若直線經(jīng)過點(diǎn)且與直線平行,求出直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形AOCD繞頂點(diǎn)A(0,5)逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到如圖所示的位置時(shí),邊BE交邊CD于M,且ME=2,CM=4.
(1)求AD的長;
(2)求經(jīng)過A、B、D三點(diǎn)的拋物線的解析式;
(3)在直線AM下方,(2)中的拋物線上是否存在點(diǎn)P,使S△PAM =?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com