【題目】如圖,在邊長為1的正方形網(wǎng)格中,有一格點(diǎn)△ABC,已知A、B、C三點(diǎn)的坐標(biāo)分別是A(1,0)、B(2,-1)、C(3,1).
(1) 請?jiān)诰W(wǎng)格圖形中畫出平面直角坐標(biāo)系;
(2) 以原點(diǎn)O為位似中心,將△ABC放大2倍,畫出放大后的△A′B′C′;
(3) 寫出△A′B′C′各頂點(diǎn)的坐標(biāo),
(4) 寫出△A′B′C′的重心坐標(biāo).
【答案】(1)如圖所示見解析;(2)如圖所示見解析;(3)A(﹣2,0),B(﹣4,2),C(﹣6,﹣2);(4)重心坐標(biāo)(﹣4,0).
【解析】
(1)根據(jù)所給的已知點(diǎn)的坐標(biāo)畫直角坐標(biāo)系;
(2)連接、、,并延長到、、長度找到各點(diǎn)的對應(yīng)點(diǎn),順次連接即可;
(3)從坐標(biāo)系中讀出各點(diǎn)的坐標(biāo)即可;
(4)要寫出重心的坐標(biāo),先要作出重心,即三條中線的交點(diǎn),再從坐標(biāo)系中讀出它的坐標(biāo).
(1)如圖所示;(2)如圖所示;
(3)從圖可知:A(﹣2,0),B(﹣4,2),C(﹣6,﹣2);
(4)
從圖上可知重心坐標(biāo)(﹣4,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;
(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時針旋轉(zhuǎn)得△AB1D1,AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(4,0),與y軸交于點(diǎn)B.在x軸上有一動點(diǎn)C(m,0)(0<m<4),過點(diǎn)C作x軸的垂線交直線AB于點(diǎn)E,交該二次函數(shù)圖象于點(diǎn)D.
(1)求a的值和直線AB的解析式;
(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,設(shè)△ACE,△DEF的面積分別為S1,S2,若S1=4S2,求m的值;
(3)點(diǎn)H是該二次函數(shù)圖象上位于第一象限的動點(diǎn),點(diǎn)G是線段AB上的動點(diǎn),當(dāng)四邊形DEGH是平行四邊形,且周長取最大值時,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.
(1)求證:PC是⊙O的切線.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時,這個三角形面積S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),BE⊥CD,垂足為點(diǎn)E.已知AC=15,cosA=.
(1)求線段CD的長;
(2)求sin∠DBE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按圖①的方式放置,固定三角板A1B1C,然后將三角板ABC繞直角頂點(diǎn)C順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖②所示的位置,AB與A1C交于點(diǎn)E,AC與A1B1交于點(diǎn)F,AB與A1B1交于點(diǎn)O.
(1)求證:△BCE≌△B1CF.
(2)當(dāng)旋轉(zhuǎn)角等于30°時,AB與A1B1垂直嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D為AC上一點(diǎn),DE⊥AB于點(diǎn)E,AC=12,BC=5.
(1)求的值;
(2)當(dāng)時,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com