【題目】如圖,在四邊形中,,,,,連接,是在四邊形邊上的一點;若點的距離為 ,這樣的點

A. 0B. 1C. 2D. 3

【答案】D

【解析】

DEAC,垂足為E,得出 即點重合.外邊的其它點到的距離都小于;假設在邊存在一個點使,根據(jù)等腰三角形和直角三角形的相關性質可以求出,由于AP=,這樣滿足條件的點在邊是存在的.同理可得邊也是存在的這樣滿足條件的點,所以符合條件的點共有3個;

,

,

,

,

按如圖方式作,

=,,

即點重合.外邊的其它點到的距離都小于,

假設在邊存在一個點使(見示意圖)時,根據(jù)等腰三角形和直角三角形的相關性質可以求出,

,

,

,

∴這樣滿足條件的點在邊是存在的.同理可得邊也是存在的這樣滿足條件的點,所以符合條件的點共有3個;

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】蘭州中山橋位于蘭州濱河路中段白塔山下、金城關前,是黃河上第一座真正意義上的橋梁,有天下黃河第一橋之美譽.它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個口袋中裝有4個完成相同的小球,把它們分別標號1、2、3、4,小明從中隨機地摸出一個球.

(1)直接寫出小明摸出的球標號為4的概率;

(2)若小明摸到的球不放回,記小明摸出球的標號為x,然后由小強再隨機摸出一個球記為y.小明和小強在此基礎上共同協(xié)商一個游戲規(guī)則:x>y,小明獲勝,否則小強獲勝.請問他們制定的游戲規(guī)則公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲對雙方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的文體生活,育紅學校準備成立聲樂、演講、舞蹈、足球、籃球五個社團,要求每個學生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學校對部分學生進行了抽樣調查在整理調查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

(1)被抽查的學生一共有多少人?

(2)將條形統(tǒng)計圖補充完整.

(3)若全校有學生1500人,請你估計全校有意參加聲樂社團的學生人數(shù).

(4)從被抽查的學生中隨意選出1人,該學生恰好選擇參加演講社團的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,分別為,邊上的高,連接,過點與點中點,連接

1)如圖,若點與點重合,求證:;

2)如圖,請寫出之間的關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長線上一點,E 為 BC 延長線上點.

(1)BD、BC CE 滿足什么條件時,△ADB∽△EAC?

(2)當△ADB∽△EAC 時,求∠DAE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:

向上點數(shù)

1

2

3

4

5

6

出現(xiàn)次數(shù)

8

10

7

9

16

10

(1)計算出現(xiàn)向上點數(shù)為6的頻率.

(2)丙說:如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.請判斷丙的說法是否正確并說明理由.

(3)如果甲乙兩同學各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

同步練習冊答案