【題目】在等腰△ABC中,AB=AC,∠A=50°,則∠B= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上林老師出示了問(wèn)題:如圖,AD∥BC,∠AEF=90°,AD=AB=BC=DC,∠B=90°,點(diǎn)E是邊BC的中點(diǎn),且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.
同學(xué)們作了一步又一步的研究:
(1)經(jīng)過(guò)思考,小明展示了一種解題思路:如圖1,取AB的中點(diǎn)M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;
(2)小穎提出一個(gè)新的想法:如圖2,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,小穎的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由;
(3)小華提出:如圖3,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.小華的觀點(diǎn)正確嗎?如果正確,寫(xiě)出證明過(guò)程;如果不正確,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】到△ABC的三條邊距離相等的點(diǎn)是△ABC的( )
A.三條中線交點(diǎn)
B.三條角平分線交點(diǎn)
C.三條高的交點(diǎn)
D.三條邊的垂直平分線交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
問(wèn)題:如圖所示,在正方形ABCD和BEFG中,點(diǎn)A,B,E在同一直線上,P是線段DF中點(diǎn),連接PG,PC.
探究:當(dāng)PG與PC的夾角為90°時(shí),平行四邊形BEFG是正方形.
小聰同學(xué)的思路是:首先可以證明四邊形BEFG是矩形,然后延長(zhǎng)GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題答案.
請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.
(1)求證:四邊形BEFG是矩形;
(2)求證:PG與PC的夾角為90°時(shí),四邊形BEFG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說(shuō)出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說(shuō)明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是△ABC的三邊長(zhǎng),若方程(a-c)x2+2bx+a+c=0有兩個(gè)相等的實(shí)數(shù)根,則△ABC是 __________三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說(shuō)明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com