【題目】解方程:
(1)x2+4x﹣5=0
(2)x(2x+3)=4x+6
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初步探究
如圖①,過點P的兩條直線分別與⊙O相切于點A,與⊙O相交于B、C兩點,且AC恰好經(jīng)過圓心O.求證△PAB∽△PCA.
進(jìn)一步探究
如圖②若其他條件不變,但AC不經(jīng)過圓心O.上述結(jié)論是否成立?請說明理由.
嘗試應(yīng)用
如圖③,PA=3,PB=,⊙O的半徑為2,請直接寫出直線PC上一點與圓心O的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(-2,3),B(4,3),C(-1,-3).
(1)求A,B兩點之間的距離;
(2)求點C到x軸的距離;
(3)求三角形ABC的面積;
(4)觀察線段AB與x軸的關(guān)系,若點D是線段AB上一點(不與A,B重合),則點D的坐標(biāo)有什么特點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△DEF(其中D,E,F(xiàn)分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出D,E,F(xiàn)三點的坐標(biāo):D(),E(),F(xiàn)();
(3)在y軸上存在一點,使PC﹣PB最大,則點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將y=x2向上平移2個單位后所得到的拋物線的解析式為( )
A.y=x2﹣2
B.y=x2+2
C.y=(x﹣2)2
D.y=(x+2)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店購進(jìn)一種商品進(jìn)行銷售,進(jìn)價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將商品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降),每月商品銷量為y(件),月利潤為w(元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價格是多少時才能使月利潤最大?最大月利潤時多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 內(nèi)錯角相等,兩直線平行B. 兩直線平行,同旁內(nèi)角互補
C. 相等的角是對頂角D. 等角的補角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1:,點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 度;
(2)求山坡A、B兩點間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“夕陽紅”養(yǎng)老院共有普通床位和高檔床位共500張.已知今年一月份入住普通床位老人300人,入住高檔床位老人90人,共計收費51萬元;今年二月份入住普通床位老人350人,入住高檔床位老人100人,共計收費58萬元.
(1)求普通床位和高檔床位每月收費各多少元?
(2)根據(jù)國家養(yǎng)老政策規(guī)定,為保障普通居民的養(yǎng)老權(quán)益,所有實際入住高檔床位數(shù)不得超過實際入住普通床位數(shù)的三分之一;另外為扶持養(yǎng)老企業(yè)發(fā)展國家民政局財政對每張入住的床位平均每年都是給予養(yǎng)老院企業(yè)2400元的補貼.經(jīng)測算,該養(yǎng)老院普通床位的運營成本是每月1200元/張,入住率為90%;高檔床位的運營成本是每月2000元/張,入住率為70%.問該養(yǎng)老院應(yīng)該怎樣安排500張床的普通床位和高檔床位數(shù)量,才能使每月的利潤最大,最大為多少元?(月利潤=月收費-月成本+月補貼)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com