【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)分別從甲地開(kāi)往乙地轎車(chē)的平均速度大于貨車(chē)的平均速度,如圖,線(xiàn)段OA、折線(xiàn)BCD分別表示兩車(chē)離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.
線(xiàn)段OA與折線(xiàn)BCD中,______表示貨車(chē)離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.
求線(xiàn)段CD的函數(shù)關(guān)系式;
貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相遇?
【答案】(1)線(xiàn)段OA表示貨車(chē)貨車(chē)離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系;(2);(3)貨車(chē)出發(fā)小時(shí)兩車(chē)相遇.
【解析】
(1)根據(jù)題意可以分別求得兩個(gè)圖象中相應(yīng)函數(shù)對(duì)應(yīng)的速度,從而可以解答本題;
(2)設(shè)CD段的函數(shù)解析式為y=kx+b,將C(2.5,80),D(4.5,300)兩點(diǎn)的坐標(biāo)代入,運(yùn)用待定系數(shù)法即可求解;
(3)根據(jù)題意可以求得OA對(duì)應(yīng)的函數(shù)解析式,從而可以解答本題.
線(xiàn)段OA表示貨車(chē)貨車(chē)離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系,
理由:千米時(shí),,
,轎車(chē)的平均速度大于貨車(chē)的平均速度,
線(xiàn)段OA表示貨車(chē)離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系,
故答案為:OA;
設(shè)CD段函數(shù)解析式為,
,在其圖象上,
,解得,
段函數(shù)解析式:;
設(shè)線(xiàn)段OA對(duì)應(yīng)的函數(shù)解析式為,
,得,
即線(xiàn)段OA對(duì)應(yīng)的函數(shù)解析式為,
,解得,
即貨車(chē)出發(fā)小時(shí)兩車(chē)相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人先后從公園大門(mén)出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達(dá).圖1是他們行走的路程y(m)與甲出發(fā)的時(shí)間x(min)之間的函數(shù)圖象.
(1)求線(xiàn)段AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)寫(xiě)出點(diǎn)B的坐標(biāo)和它的實(shí)際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫(huà)出d與x之間的函數(shù)圖象(標(biāo)注必要數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在研究正方形的有關(guān)問(wèn)題時(shí)發(fā)現(xiàn)有這樣一道題:“如圖①,在正方形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC邊上的一點(diǎn),且∠FAE=∠EAD.你能夠得出什么樣的正確的結(jié)論?”
(1)小明經(jīng)過(guò)研究發(fā)現(xiàn):EF⊥AE.請(qǐng)你對(duì)小明所發(fā)現(xiàn)的結(jié)論加以證明;
(2)小明之后又繼續(xù)對(duì)問(wèn)題進(jìn)行研究,將“正方形”改為“矩形”、“菱形”和“任意平行四邊形”(如圖②、圖③、圖④),其它條件均不變,認(rèn)為仍然有“EF⊥AE”.你同意小明的觀點(diǎn)嗎?若你同意小明的觀點(diǎn),請(qǐng)取圖③為例加以證明;若你不同意小明的觀點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖線(xiàn)段AB和CD表示兩面鏡子,且直線(xiàn)AB∥直線(xiàn)CD,光線(xiàn)EF經(jīng)過(guò)鏡子AB反射到鏡予CD,最后反射到光線(xiàn)GH.光線(xiàn)反射時(shí),∠1=∠2,∠3=∠4,下列結(jié)論:①直線(xiàn)EF平行于直線(xiàn)GH;②∠FGH的角平分線(xiàn)所在的直線(xiàn)垂直于直線(xiàn)AB;③∠BFE的角平分線(xiàn)所在的直線(xiàn)垂直于∠4的角平分線(xiàn)所在的直線(xiàn);④當(dāng)CD繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90時(shí),直線(xiàn)EF與直線(xiàn)GH不一定平行,其中正確的是( )
A. ①②③④B. ①②③C. ②③D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)E和點(diǎn)F分別在直線(xiàn)AB和CD上,EL和FG分別平分∠BEF和∠EFC,EL∥FG.
(1)求證:AB∥CD;
(2)如圖,點(diǎn)M為FD上一點(diǎn),∠BEM,∠EFD的角平分線(xiàn)EH,FH相交于點(diǎn)H,若∠H=∠FEM+15°,延長(zhǎng)HE交FG于G點(diǎn),求∠G的度數(shù);
(3)如圖,點(diǎn)N在直線(xiàn)AB和直線(xiàn)CD之間,且EN⊥FN,點(diǎn)P為直線(xiàn)AB上的點(diǎn),若∠EPF,∠PFN的角平分級(jí)交于點(diǎn)Q,設(shè)∠BEN=α,直接寫(xiě)出∠PQF的大小為(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=60°,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求∠CAD的度數(shù);
(2)若OA = 2,求陰影部分的面積(結(jié)果保留π).
【答案】(1)∠CAD的度數(shù)為30°;
(2)陰影部分的面積為.
【解析】試題分析:(1)連接OD.由切線(xiàn)的性質(zhì)可知OD⊥BC,從而可證明AC∥OD,由平行線(xiàn)的性質(zhì)和等腰三角形的性質(zhì)可證明∠CAD=∠OAD;(2)連接OE,ED、OD.先證明ED∥AO,然后依據(jù)同底等高的兩個(gè)三角形的面積相等可知S△AED=S△EDO,于是將陰影部分的面積可轉(zhuǎn)化為扇形EOD的面積求解即可.
試題解析:(1)連接OD,
∵BC是⊙O的切線(xiàn),D為切點(diǎn),
∴OD⊥BC.
又∵AC⊥BC,
∴OD∥AC,
∴∠ADO=∠CAD.
又∵OD=OA,
∴∠ADO=∠OAD,
∴∠CAD=∠OAD=30°.
(2)連接OE,ED.
∵∠BAC=60°,OE=OA,
∴△OAE為等邊三角形,
∴∠AOE=60°,
∴∠ADE=30°.
又∵,
∴∠ADE=∠OAD,
∴ED∥AO,
∴
∴陰影部分的面積 = .
【題型】解答題
【結(jié)束】
6
【題目】如圖是由兩個(gè)長(zhǎng)方體組合而成的一個(gè)立體圖形的三視圖,根據(jù)圖中所標(biāo)尺寸(單位:mm),求這個(gè)立體圖形的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GF交AC于F,交AC的平行線(xiàn)BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, ∠B、∠D的兩邊分別平行。
(1)在圖1中,∠B與∠D的數(shù)量關(guān)系是 ;在圖2中,∠B與∠FDC的數(shù)量關(guān)系是 ;
(2)用一句話(huà)歸納的結(jié)論為: ;
(3)已知∠α的兩邊與∠β的兩邊分別平行,并且∠α比∠β的3倍少,求∠α、∠β的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com