【題目】某興趣小組為了了解本校學生參加課外體育鍛煉情況,隨機抽取本校40名學生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況統(tǒng)計圖中,“經(jīng)常參加”所對應的圓心角的度數(shù)為;“經(jīng)常參加課外體育鍛煉的學生最喜歡的一種項目”中,喜歡足球的人數(shù)有人,補全條形統(tǒng)計圖.
(2)該校共有1200名學生,請估計全校學生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?
(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.

【答案】
(1)144°,1
(2)解:全校學生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)約為:1200× =180人;

(3)解:設A代表“乒乓球”、B代表“籃球”、C代表“足球”、D代表“羽毛球”,畫樹狀圖如下:

共有12種等可能的結果數(shù),其中選中的兩個項目恰好是“乒乓球”、“籃球”的情況占2種,

所以選中“乒乓球”、“籃球”這兩個項目的概率是 =


【解析】(1)360°×(1﹣15%﹣45%)=360°×40%=144°;

“經(jīng)常參加”的人數(shù)為:40×40%=16人,

喜歡足的學生人數(shù)為:16﹣6﹣4﹣3﹣2=1人;

補全統(tǒng)計圖如圖所示:

故答案為:144°,1;

(1)圓心角=360°×百分比;經(jīng)常參加的人數(shù)減去其他,剩下的就是最喜歡足球的人數(shù);(2)求出樣本40個人中最喜歡乒乓球的人數(shù)為6人,樣本可估計總體,1200× =180人;(3)"四選二"相當于摸二次球(不放回),共12種機會均等的結果,2種關注的結果,利用關注的結果機會均等的結果即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司針對新客戶優(yōu)惠收費,首件物品的收費標準為:若重量不超過10千克,則免運費;當重量為千克時,運費為;第二件物品的收費標準為:當重量為千克時,運費為。

(1)若新客戶所奇首件物品的重量為13千克,則運費是多少元?

(2)若新客戶所寄首件物品的運費為32,則物品的重量是多少千克?

(3)若新客戶所寄首件物品與第二件物品的重量之比為2:5,共付運費為60,則兩件物品的重量各是多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.

(1)求證:AE=CF;

(2)若∠ABE=55°,求∠EGC的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A,B兩地相距4千米,上午800,甲從A地出發(fā)步行到B地,820乙從B地出發(fā)騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時間()之間的關系如圖所示.由圖中的信息知,乙到達A地的時刻為(  )

A. 830B. 835C. 840D. 845

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+3(a<0)與x軸交于A(3,0)、B兩點,與y軸交于點C,拋物線的對稱軸是直線x=1,D為拋物線的頂點,點E在y軸C點的上方,且CE=

(1)求拋物線的解析式及頂點D的坐標;
(2)求證:直線DE是△ACD外接圓的切線;
(3)在直線AC上方的拋物線上找一點P,使SACP= SACD , 求點P的坐標;
(4)在坐標軸上找一點M,使以點B,C,M為頂點的三角形與△ACD相似,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有小正方形的邊長都為1,A、BC都在格點上.

1)過點C畫直線AB的平行線(不寫畫法,下同);

2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H

3)線段_____的長度是點A到直線BC的距離;

4)線段AG、AH的大小關系為AG_____AH.(填“>”或“<”或“=”),理由________

查看答案和解析>>

同步練習冊答案