【題目】解不等式組 , 并把解集在數(shù)軸上表示出來.

【答案】解:
解(1)得:x≥﹣1,
解(2)得:x≤2.

不等式組的解集是:﹣1≤x≤2.
【解析】先求出不等式組中每一個不等式的解集,然后把不等式的解集表示在數(shù)軸上,再表示出它們的公共部分即可.
【考點精析】解答此題的關(guān)鍵在于理解不等式的解集在數(shù)軸上的表示的相關(guān)知識,掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈,以及對一元一次不等式組的解法的理解,了解解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC切⊙O于點B,OC平行于弦AD,過點D作DE⊥AB于點E,連結(jié)AC,與DE交于點P.求證:

(1)PE=PD
(2)ACPD=APBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在第一象限內(nèi),點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解
拋物線y=x2上任意一點到點(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問題.
問題解決
如圖,在平面直角坐標(biāo)系中,直線y=kx+1與y軸交于C點,與函數(shù)y=x2的圖象交于A,B兩點,分別過A,B兩點作直線y=﹣1的垂線,交于E,F(xiàn)兩點.

(1)寫出點C的坐標(biāo),并說明∠ECF=90°
(2)在△PEF中,M為EF中點,P為動點.
①求證:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF為一條對角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣2,n)在拋物線y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此拋物線經(jīng)過點B(4,n),且二次函數(shù)y=x2+bx+c的最小值是﹣4,請畫出點P(x﹣1,x2+bx+c)的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,“在初中數(shù)學(xué)教學(xué)中使用計算器是否直接影響學(xué)生計算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機調(diào)查了若干名學(xué)生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖:
學(xué)生對使用計算器影響計算能力發(fā)展的看法統(tǒng)計表

看法

沒有影響

影響不大

影響很大

學(xué)生人數(shù)

100

60

m

根據(jù)以上圖表信息,解答下列問題:

(1)統(tǒng)計表中的m= ;
(2)統(tǒng)計圖中表示“影響不大”的扇形的圓心角度數(shù)為  度;
(3)從這次接受調(diào)查的學(xué)生中隨機調(diào)查一人,恰好是持“影響很大”看法的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點M(﹣1,2)和點N(1,﹣2),交x軸于A,B兩點,交y軸于C,則:
①a+c=0;
②無論a取何值,此二次函數(shù)圖象與x軸必有兩個交點,函數(shù)圖象截x軸所得的線段長度必大于2;
③當(dāng)函數(shù)在x< 時,y隨x的增大而減;
④當(dāng)﹣1<m<n<0時,m+n<
⑤若a=1,則OAOB=OC2
以上說法正確的有( )
A.①②③④⑤
B.①②④⑤
C.②③④
D.①②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù)y= 經(jīng)過正方形AOBC對角線的交點,半徑為(6﹣3 )的圓內(nèi)切于△ABC,則k的值為

查看答案和解析>>

同步練習(xí)冊答案