【題目】如圖所示,在中,的垂直平分線交于點,交于點的垂直平分線交于點,交于點,連接,求證:的周長;21.

如圖所示,在中,若,,的垂直平分線交于點,交于點的垂直平分線交于點,交于點,連接,試判斷的形狀,并證明你的結論.

如圖所示,在中,若,的垂直平分線交于點,交于點,的垂直平分線交于點,交于點,連接,若,,求的長.

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析:由直線為線段的垂直平分線,根據(jù)線段垂直平分線定理:可得,同理可得,然后表示出三角形的三邊之和,等量代換可得其周長等于的長;

,可得,又由的垂直平分線,得出,即可得出,同理:,即可得出結論;

先利用垂直平分線計算出,進而得出,進而得出,最后用勾股定理即可得出結論.

試題解析:∵直線為線段的垂直平分線(已知),

(線段垂直平分線上的點到線段兩端點的距離相等),

又直線為線段的垂直平分線(已知),

(線段垂直平分線上的點到線段兩端點的距離相等),

的周長(等量代換);

,

,

的垂直平分線交于點

,

,

同理:,

是等邊三角形;

的垂直平分線,

,,

中,,

,,

,,

,

的垂直平分線,

,

中,根據(jù)勾股定理得,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.

(1)幾秒后PCQ的面積為3cm2?此時PQ的長是多少?(結果用最簡二次根式表示)

(2)幾秒后以A、BP、Q為頂點的四邊形的面積為22cm2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠A=60°,點E,F(xiàn)分別在AB,AC上,把∠A沿著EF對折,使點A落在BC上點D處,且使ED⊥BC.
(1)猜測AE與BE的數(shù)量關系,并說明理由;
(2)求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)試判斷四邊形AECF的形狀;

(2)若AE=BE,BAC=90°,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,垂足為D,AB=AC=9,BC=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,E,F(xiàn)分別是邊BC,CD邊上的動點,且AE=AF,設△AEF的面積為y,EC的長為x.

(1)求y與x之間的函數(shù)表達式,并寫出自變量x的取值范圍.
(2)當x取何值時,△AEF的面積最大,最大面積是多少?
(3)在直角坐標系中畫出y關于x的函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1個單位長度,向右平移5個單位長度,可以得到三角形A′B′C′.

(Ⅰ)在圖中畫出△A′B′C′;

(Ⅱ)直接寫出點A′、B′、C′的坐標;

(Ⅲ)寫出A′C′AC之間的位置關系和大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課中,同學們準備了一些等腰直角三角形紙片,從每張紙片中剪出一個扇形制作圓錐玩具模型.如圖,已知△ABC是腰長為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請求出所制作圓錐底面的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△AOB中點O是原點,點A在y軸上,點B的坐標是(2 ,2),小明做一個數(shù)學實驗,在x軸上取一動點C,以AC為一邊畫出等邊△ACP,移動點C時,探究點P的位置變化情況.

(1)如圖,小明將點C移至x軸負半軸,在AC的右側畫出等邊△ACP,并使得頂點P在第三象限時,連接BP,求證:△AOC≌△ABP;
(2)小明在x軸上移動點C,并在AC的右側畫出等邊△ACP時,發(fā)現(xiàn)點P在某函數(shù)圖象上,請求出點P所在函數(shù)圖象的解析式.
(3)小明在x軸上移動點C點時,若在AC的左側畫出等邊△ACP,點P會不會在某函數(shù)圖象上?若會在某函數(shù)圖象上,請直接寫出該函數(shù)圖象的解析式,若不在某函數(shù)圖象上,請說明理由.

查看答案和解析>>

同步練習冊答案