如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(m,1)、B(﹣1,n),與x軸相交于點(diǎn)C(2,0),且AC=OC.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出不等式ax+b≥的解集.
解:(1)過A作AD⊥x軸,可得AD=1,
∵C(2,0),即OC=2,∴AC=OC=。
在Rt△ACD中,根據(jù)勾股定理得:CD=1。
∴OD=OC+CD=2+1=3!郃(3,1)。
將A、C的坐標(biāo)代入一次函數(shù)解析式得:
,解得:。
∴一次函數(shù)解析式為y=x﹣2。
將A(3,1)代入反比例解析式得:k=3,
∴反比例解析式為。
(2)根據(jù)圖形得:不等式ax+b≥的解集為﹣1≤x<0或x≥3。
解析試題分析:(1)過A作AD垂直于x軸,如圖所示,由C的坐標(biāo)求出OC的長,根據(jù)AC=OC求出AC的長,由A的縱坐標(biāo)為1,得到AD=1,利用勾股定理求出CD的長,有OC+CD求出OD的長,確定出m的值,將A于與C坐標(biāo)代入一次函數(shù)解析式求出a于b的值,即可得出一次函數(shù)解析式;將A坐標(biāo)代入反比例函數(shù)解析式求出k的值,即可確定出反比例解析式。
(2)將B坐標(biāo)代入反比例解析式中求出n的值,確定出B坐標(biāo),利用圖形即可得出所求不等式的解集:
將B(﹣1,n)代入反比例解析式得:n=﹣3,即B(﹣1,﹣3)。
根據(jù)圖形得:不等式ax+b≥的解集為﹣1≤x<0或x≥3。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知函數(shù)的圖象與y軸交于點(diǎn)A,一次函數(shù) 的圖象 經(jīng)過點(diǎn)B(0,-1),并且與x軸以及的圖象分別交于點(diǎn)C、D.
(1)若點(diǎn)D的橫坐標(biāo)為1,求四邊形AOCD的面積(即圖中陰影部分的面積);
(2)在第(1)小題的條件下,在y軸上是否存在這樣的點(diǎn)P,使得以點(diǎn)P、B、D為頂點(diǎn)的三角形是等腰三角形.如果存在,求出點(diǎn)P坐標(biāo);如果不存在,說明理由.
(3)若一次函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)D始終在第一象限,則系數(shù)k的取值范圍是 .(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖像,它們交于點(diǎn)A(4,3).一次函數(shù)的圖像與y軸交于點(diǎn)B,且OA=OB,求這兩個(gè)函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A(1,4)和點(diǎn)B
(,).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)>0時(shí),直接寫出>時(shí)自變量的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于軸對稱,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
△ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).
(1)如圖1,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的解析式;
(2)如圖2,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的⊙B與y軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);
(3)如圖3,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C時(shí),求∠ODB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計(jì)劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).
(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價(jià)是每1千克3元,乙種飲料銷售價(jià)是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某產(chǎn)品生產(chǎn)車間有工人10名.已知每名工人每天可生產(chǎn)甲種產(chǎn)品12個(gè)或乙種產(chǎn)品10個(gè),且每生產(chǎn)一個(gè)甲種產(chǎn)品可獲得利潤100元,每生產(chǎn)一個(gè)乙種產(chǎn)品可獲得利潤180元.在這10名工人中,車間每天安排x名工人生產(chǎn)甲種產(chǎn)品,其余工人生產(chǎn)乙種產(chǎn)品.
(1)請寫出此車間每天獲取利潤y(元)與x(人)之間的函數(shù)關(guān)系式;
(2)若要使此車間每天獲取利潤為14400元,要派多少名工人去生產(chǎn)甲種產(chǎn)品?
(3)若要使此車間每天獲取利潤不低于15600元,你認(rèn)為至少要派多少名工人去生產(chǎn)乙種產(chǎn)品才合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
我市某商場有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
(1)若商家同時(shí)購進(jìn)甲、乙兩種商品100件,設(shè)甲商品購進(jìn)x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計(jì)劃最多投入3000元用于購進(jìn)此兩種商品共100件,則至少要購進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動(dòng),小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價(jià)打九折 |
超過400元 | 售價(jià)打八折 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( 。
A.4個(gè) | B.3個(gè) | C.2個(gè) | D.1個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com