【題目】在一個不透明袋子中有1個紅球、1 個綠球和n個白球,這些球除顏色外都相同.
(1)從袋中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻,不斷重復該試驗.發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.75,則n的值為 ;
(2)當n=2時,把袋中的球攪勻后任意摸出2個球,求摸出的2個球顏色不同的概率.
【答案】(1)6;(2)
【解析】試題分析:(1)根據(jù)白球的頻率穩(wěn)定在0.75附近得到白球的概率約為0.75,根據(jù)白球個數(shù)確定出總個數(shù),進而確定出黑球個數(shù);
(2)將所有等可能的結(jié)果列舉出來,利用概率公式求解即可.
試題解析:(1)根據(jù)題意得: ,
解得:n=6,
則n的值為6,
(2)任意摸出2個球,共有12種等可能的結(jié)果,即(紅,綠)、(紅,白1)、(紅,白2)、(綠,紅)、(綠,白1)、(綠,白1)、(白1,紅)、(白1,綠)、(白1,白2)、(白2,紅)、(白2,綠)、(白2,白1),
其中2個球顏色不同的結(jié)果有10種,所以所求概率為
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答
(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E,F(xiàn)分別是邊BC,CD上的點,且∠EAF= ∠BAD.
求證:EF=BE+FD;
(2)如圖,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是邊BC,CD上的點,且∠EAF= ∠BAD,(1)中的結(jié)論是否仍然成立?
(3)如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF= ∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD=CB,E,F(xiàn)是AC上兩動點,且有DE=BF.
(1)若點E,F(xiàn)運動至如圖(1)所示的位置,且有AF=CE,求證:△ADE≌△CBF;
(2)若點E,F(xiàn)運動至如圖(2)所示的位置,仍有AF=CE,則△ADE≌△CBF還成立嗎?為什么?
(3)若點E,F(xiàn)不重合,則AD和CB平行嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B、C的坐標:B( , )、C( , );并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C. 此時,EF所在直線與(1)中的拋物線交于第一象限的點M.連接MB和MC,當△OCE∽△OBC時,判斷四邊形AEMC的形狀,并給出證明;
(3)有一動點P在(1)中的拋物線上運動,是否存在點P,以點P為圓心作圓能和直線AC和x軸同時相切 ,若存在,求出圓心P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com