【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)求a的值,并把頻數(shù)直方圖補(bǔ)充完整;
(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績(jī)?cè)?/span>1.29m(含1.29m)以上的人數(shù).
【答案】(1)a=20,補(bǔ)圖見(jiàn)解析;(2)300人
【解析】
(1)利用總?cè)藬?shù)減去各個(gè)組別的人數(shù)即可求出a的值,然后補(bǔ)全頻數(shù)直方圖即可;
(2)利用500乘跳高成績(jī)?cè)?/span>1.29m(含1.29m)以上的人數(shù)的頻率即可得出結(jié)論.
解:(1)a=50-8-12-10=20,
;
(2)該年級(jí)學(xué)生跳高成績(jī)?cè)?/span>1.29m(含1.29m)以上的人數(shù)是:500×=300(人)
答:該年級(jí)學(xué)生跳高成績(jī)?cè)?/span>1.29m(含1.29m)以上有300人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)該二次函數(shù)的頂點(diǎn)坐標(biāo)為__________;
(2)該函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)為__________;
(3)用五點(diǎn)法畫(huà)函數(shù)圖象
… | … | ||||||
… | … |
(4)當(dāng)時(shí),則的取值范圍是__________;
(5)將該拋物線繞頂點(diǎn)旋轉(zhuǎn)180°,所得函數(shù)的解析式為__________;
(6)拋物線與軸有且僅有一個(gè)交點(diǎn),則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)A和點(diǎn)B(3,0),與軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在軸下方上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN//軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取最大值時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:
①當(dāng)x>3時(shí),y<0;
②3a+b<0;
③;
④;
其中正確的結(jié)論是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC內(nèi)自由移動(dòng),若⊙O的半徑為1,且圓心O在△ABC內(nèi)所能到達(dá)的區(qū)域的面積為,則△ABC的周長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,如果正方形PQMN的邊QM在BC上,頂點(diǎn)P,N分別在AB,AC上,那么我們稱這樣的正方形為“三角形內(nèi)接正方形”小波同學(xué)按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖(2),任意畫(huà)△ABC,在AB上任取一點(diǎn)P′,畫(huà)正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)BN′并延長(zhǎng)交AC于點(diǎn)N,畫(huà)NM⊥BC于點(diǎn)M,NP⊥NM交AB于點(diǎn)P,PQ⊥BC于點(diǎn)Q,得到四邊形PQMN,小波把線段BN稱為“波利亞線”,請(qǐng)幫助小波解決下列問(wèn)題:
(1)四邊形PQMN是否是△ABC的內(nèi)接正方形,請(qǐng)證明你的結(jié)論;
(2)若△ABC為等邊三角形,邊長(zhǎng)BC=6,求△ABC內(nèi)接正方形的邊長(zhǎng);
(3)如圖(3),若在“波利亞線”BN上截取NE=NM,連結(jié)EQ,EM.當(dāng)時(shí),猜想∠QEM的度數(shù),并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).直線與拋物線同時(shí)經(jīng)過(guò).
(1)求的值.
(2)點(diǎn)是二次函數(shù)圖象上一點(diǎn),(點(diǎn)在下方),過(guò)作軸,與交于點(diǎn),與軸交于點(diǎn).求的最大值.
(3)在(2)的條件下,是否存在點(diǎn),使和相似?若存在,求出點(diǎn)坐標(biāo),不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校七年級(jí)學(xué)生作業(yè)時(shí)間情況,隨機(jī)抽取了該校七年級(jí)部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下的統(tǒng)計(jì)圖.
作業(yè)時(shí)間分組表(單位:小時(shí))
別 | 作業(yè)時(shí)間 | 人數(shù) | 頻率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小計(jì) | a | 1 |
(1)統(tǒng)計(jì)圖中的a=______;b=______;m=______;n=______.
(2)求出C組的扇形的圓心角度數(shù).
(3)如果該校七年級(jí)學(xué)生共400名,試估計(jì)這400名生作業(yè)時(shí)間在B組和C組的人數(shù)共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com