【題目】設△ABC的一邊長為x,這條邊上的高為y,y與x滿足的反比例函數(shù)關系如圖所示.當△ABC為等腰直角三角形時,x+y的值為(
A.4
B.5
C.5或3
D.4或3

【答案】D
【解析】解:由反比例函數(shù)的圖象得xy=4,當?shù)妊苯恰鰽BC的斜邊為底時,該底邊上的高為這個底的一半, 即x=2y,2y2=4,
解得:y= ,
則x=2 ,
∴x+y=3 ;
當?shù)妊苯恰鰽BC的一條直角邊為底時,該底邊上的高為另一條直角邊,
即x=y,y2=4,
解得:y=2,
則x=2,
∴x+y=4,
綜上知x+y的值為4或3
故選:D.
【考點精析】根據(jù)題目的已知條件,利用等腰直角三角形和反比例函數(shù)的圖象的相關知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC紙片中,∠ACB=90°,AC=6,BC=8,沿過其中一個頂點的直線把△ABC剪開,若剪得的兩個三角形中僅有一個是等腰三角形,那么這個等腰三角形的面積不可能是(
A.14.4
B.19.2
C.18.75
D.17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對稱軸為直線x=﹣1的拋物線y=x2+bx+c,與x軸相交于A,B兩點,其中點A的坐標為(﹣3,0).
(1)求點B的坐標.
(2)點C是拋物線與y軸的交點,點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數(shù)學興趣小組測量了旗桿的長度.如圖2,在某一時刻,光線與水平面的夾角為72°,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,若1米的豎立標桿PQ在斜坡上的影長QR為2米,求旗桿AB的長度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的兩點,且BF=ED,求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦了一次成語知識競賽,滿分10分,學生得分均為整數(shù),成績達到6分及6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽中,甲、乙兩組學生成績分布的折線統(tǒng)計圖和成績統(tǒng)計分析表如圖所示.

(1)求出下列成績統(tǒng)計分析表中a,b的值:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.8

a

3.76

90%

30%

乙組

b

7.5

1.96

80%

20%


(2)小英同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上面表格判斷,小英是甲、乙哪個組的學生;
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你寫出兩條支持乙組同學觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知常數(shù)p>0,數(shù)列{an}滿足an+1=|p﹣an|+2an+p,n∈N*.
(1)若a1=﹣1,p=1, ①求a4的值;
②求數(shù)列{an}的前n項和Sn;
(2)若數(shù)列{an}中存在三項ar , as , at(r,s,t∈N*,r<s<t)依次成等差數(shù)列,求 的取值范圍.

查看答案和解析>>

同步練習冊答案