甲、乙兩人玩“錘子、石頭、剪子、布”游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為2,3,4,6,兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負。
(1)若甲先摸,則他摸出“石頭”的概率是多少?
(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?
(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?
解:(1)若甲先摸,共有15張卡片可供選擇,其中寫有“石頭”的卡片共3張,故甲摸出“石頭”的概率為
(2)若甲先摸且摸出“石頭”,則可供乙選擇的卡片還有14張,其中乙只有摸出卡片“錘子”或“布”才能獲勝,這樣的卡片共有8張,故乙獲勝的概率為;
(3)若甲先摸,則“錘子”、“石頭”、“剪子”、“布”四種卡片都有可能被摸出,若甲先摸出“錘子”,則甲獲勝(即乙摸出“石頭”或“剪子”)的概率為
若甲先摸出“石頭”,則甲獲勝(即乙摸出“剪子”)的概率為;
若甲先摸出“剪子”,則甲獲勝(即乙摸出“布”)的概率為;
若甲先摸出“布”,則甲獲勝(即乙摸出“錘子”或“石頭”)的概率為;
故甲先摸出“錘子”獲勝的可能性最大。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

甲、乙兩人玩“錘子、石頭、剪子、布”游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為2,3,4,6.兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負.
(1)若甲先摸,則他摸出“石頭”的概率是多少?
(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?
(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

甲、乙兩人玩“錘子、石頭、剪子、布”游戲.他們在不透明的袋子中放入形狀、大小均相同的19張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為3、4、5、7,兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負.
(1)若甲先摸,他摸出“石頭”的概率是多少?
(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?
(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(江蘇連云港卷)數(shù)學(帶解析) 題型:解答題

甲、乙兩人玩“錘子、石頭、剪子、布”游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為2,3,4,6.兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負.
(1)若甲先摸,則他摸出“石頭”的概率是多少?
(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?
(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年初中畢業(yè)升學考試(江蘇連云港卷)數(shù)學(解析版) 題型:解答題

甲、乙兩人玩“錘子、石頭、剪子、布”游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有“錘子”、“石頭”、“剪子”、“布”的卡片張數(shù)分別為2,3,4,6.兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:“錘子”勝“石頭”和“剪子”,“石頭”勝“剪子”,“剪子”勝“布”,“布”勝“錘子”和“石頭”,同種卡片不分勝負.

(1)若甲先摸,則他摸出“石頭”的概率是多少?

(2)若甲先摸出了“石頭”,則乙獲勝的概率是多少?

(3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?

 

查看答案和解析>>

同步練習冊答案