【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤與投資金額成正比例關系,如圖1所示;種植花卉的利潤與投資金額成二次函數(shù)關系,如圖2所示.(注:利潤與投資金額的單位均為萬元)
(1)分別求出利潤與關于投資金額的函數(shù)關系;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉的金額是萬元,求這位專業(yè)戶能獲取的最大總利潤是多少萬元?
【答案】(1);;(2)他能獲取的最大利潤是32萬元.
【解析】
(1)可根據(jù)圖象利用待定系數(shù)法求解函數(shù)解析式;
(2)根據(jù)總利潤=樹木利潤+花卉利潤,列出函數(shù)關系式,再求函數(shù)的最值.
解:(1)設,由圖1所示,函數(shù)的圖象過,
∴,,
∴利潤關于投資量的函數(shù)關系式是;
∴設,由圖2所示,函數(shù)的圖象過,
∴,解得,
∴利潤關于投資量的函數(shù)關系式是;
(2)設投入種植花卉的資金為萬元(),總利潤為萬元,
則投入種植樹木的資金為萬元,
∴ ,
∵,,
∴當時,的最大值是32萬元.
∴他能獲取的最大利潤是32萬元.
故答案為:(1);;(2)他能獲取的最大利潤是32萬元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于點E、F、G,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 °;
(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】尺規(guī)作圖:
已知:∠AOB.
求作:射線OC,使它平分∠AOB.
作法:
(1)以O為圓心,任意長為半徑作弧,交OA于D,交OB于E;
(2)分別以D、E為圓心,大于DE的同樣長為半徑作弧,兩弧相交于點C;
(3)作射線OC.
所以射線OC就是所求作的射線.
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連結CE,CD.
∵OE=OD, = ,OC=OC,
∴△OEC≌△ODC(依據(jù): ),
∴∠EOC=∠DOC,
即OC平分∠AOB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,的坐標分別為,,過,,三點作圓,點在第一象限部分的圓上運動,連結,過點作的垂線交的延長線于點,下列說法:①;②;③的最大值為10.其中正確的是( )
A. ①②B. ②③C. ①③D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國最近十年間核電發(fā)電量的增長情況,根據(jù)統(tǒng)計圖提供的信息,下列判斷合理的是( 。
A. 2011年我國的核電發(fā)電量占總發(fā)電量的比值約為1.5%
B. 2006年我國的總發(fā)電量約為25000億千瓦時
C. 2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍
D. 我國的核電發(fā)電量從2008年開始突破1000億千瓦時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中A點的坐標為(8,) ,AB⊥軸于點B, sin∠OAB =,反比例函數(shù)的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.
(1)求反比例函數(shù)解析式;
(2)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:四邊形BDCF是菱形;
(2)當Rt△ABC中的邊或角滿足什么條件時?四邊形BDCF是正方形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com